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Uncertainty

Problems:
1. partial observability (road state, other drivers' plans)
2. noisy sensors (traffic reports)
3. uncertainty in action outcomes (flat tire)
4.

immense complexity of modeling and predicting
traffic

A “purely logical” approach is too rigid. You have to enumerate a ton of things
before you can actually assert truth of a statement (lest you be “flaky”). Also you

don’t know everything. You don’t know what the traffic will be like, if there will be an
accident, etc.



Logical Approach to Representing
Uncertainty

A, will get me there on time if there's no accident on
the bridge and it doesn't rain and my tires
remain intact etc etc.”

A, 440 Might reasonably be said to get me there on
time but I'd have to stay overnight in the airport

Hence a purely logical approach either
1. risks falsehood: “A,; will get me there on time”, or

2. leads to conclusions that are too weak for decision
making




Methods for Handling Uncertainty

* Defauit or nonmonotonic iogic:
— Assume my car does not have a flat tire
— Assume A,; works unless contradicted by evidence

* Issues: What assumptions are reasonable? How to
handle contradiction?

Rules with fudge factors:
— A,s|—0 5 get there on time
— Sprinkler |— 4 oo WetGrass
— WetGrass |— 4, Rain
* Issues: Problems with combination, e.g., Sprinkler causes Rain??

With monotonic logic, if having certain premises necessitates a conclusion, then
adding premises doesn’t change the conclusion. For example: If A then B; A;
Therefore B; If C is also true, B is still true.

With nonmonotonic logic, adding premises changes your conclusion. For example:
Bob is an eagle. Can he fly? Yes. But Bob has a broken wing. Can he fly? No.
But Bob has a jetpack. Can he fly? Yes (etc.)



Modeling Uncertainty

* Probability
— Model agent's degree of belief
— Given the available evidence,
— A,5 Will get me there on time with probability 0.04

Imagine you are doing machine vision and tracking an orange soccer ball, which is
currently at rest. Suddenly the ball appears across the field. Maybe it was just
kicked, maybe this is a noisy observation, or maybe the ball teleported. You can
use probability to model “degree of belief’ given the available evidence and certain
prior knowledge (like P(ball gets kicked)=0.5, P(ball teleports)=0.1, etc).



Advantages of Probabilistic
Reasoning

Appropriate for complex, uncertain, environments

- Will it rain tomorrow?

Applies naturally to many domains

- Robot predicting the direction of road, biology, Word paper clip

Allows to generalize acquired knowledge and
incorporate prior belief

- Medical diagnosis
Easy to integrate different information sources

- Robot’s sensors




Probability

Probabilistic assertions summarize effects of
— laziness: failure to enumerate exceptions, qualifications
— ignorance: lack of relevant facts, initial conditions

Probabilities relate propositions to agent's own state of
knowledge
e.g., P(A,5 | no reported accidents) = 0.06

Probabiiities of propositions change with new evidence:
e.g., P(A,5 | no reported accidents, 5 a.m.) =0.15

Here laziness and ignorance are not bad things. Using a probabilistic approach
does not show personal weakness.

P(A| B) is read “probability of A given B” (meaning the probability that A is true
assuming that B is true).



Making Decisions Under Uncertainty

Suppose, agent’s knowledge includes these facts/data:
P(A,5 gets me there on time | ...) =0.04
P(Aq, gets me there ontime | ...) =0.70
P(Ai5o9ets me thereontime|...) =0.95
P(A 440 9ets me there on time | ...) =0.9999

* Which action to choose?
Depends on my preferences, e.g., missing flight vs. time
spent waiting
— Utility theory is used to represent and infer preferences
— Decision theory: probability theory + utility theory

Utility function combines information into a scoring system. All you might care about
is making your flight, or maybe you care about not wasting your time.



Random Variables

» Basic element; random variable

— possible worlds defined by assignment of values to
random variables.

* Boolean random variables
—e.g., Cavity (do | have a cavity?)
* Discrete random variables
—e.g., Weather is one of <sunny,rainy,cloudy,snow>

Cavity can be either true or false
Weather is either sunny, rainy, cloudy, or snowy



Propositions
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assignment o 0 a random variable:
—e.g., Weather = sunny, Cavity = false

— (abbreviated as —cavity)

« Complex propositions formed from elementary
propositions and standard logical connectives

—e.qg., Weather = sunny \v Cavity = false

planning actions

— means “not”
v means “or”



Syntax

* Atomic event: A compiete specification of the state o
world about which the agent is uncertain

-t
~—
0
(0]

E.g., if the world consists of only two Boolean variables Cavity and
Toothache, then there are 4 distinct atomic events:

Cavity = false nToothache = false
Cavity = false A Toothache = true
Cavity = true A Toothache = false
Cavity = true A Toothache = true

» Atomic events are mutually exclusive and exhaustive
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Basic Notations

* Random variable
- referring to an element / event whose status is unknown:
A = “it will rain tomorrow”
* Domain (usually denoted by Q)
- The set of values a random variable can take:
- “A = The stock market will go up this year”: Binary
- “A = Number of Steelers wins in 2007”: Discrete
- “A = % change in Google stock in 2007”: Continuous

What is the domain of a die? If you had a random variable D, which is the value
you get when you roll a die, what are the possible values D can have?
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Axioms of Probability

(Kolmogorov’s Axioms)
Andrey Kolmogorov 1903-1987

A variety of useful facts can be derived from just three
axioms:

1. 0<PA)=<1

2. P(true) =1, P(false) =0

3. P(AvB)=P(A)+PB)-P(AAB)
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Axioms of Probability
(Kolmogorov’s axioms)

* A variety of useful facts can be derived from just three
axioms:

1. 0<PA) <1
2. P(true) =1, P(false) =0
3. P(AvB)=P(A)+P(B)-PAAB)

P(Today is September 23 2009) = 1

Well, | suppose now P(Today is September 23, 2009) = 0
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Axioms of Probability
(Kolmogorov’s Axioms)

A variety of useful facts can be derived from just three
axioms:

1. 0<PA)<1
2. P(true) =1, P(false) =0
3. PAvB)=PA)+PB)-PAAB)

P(A) + P(B) double counts the intersecting area, hence you subtract P(A,B)
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Axioms of Probability
(Kolmogorov’s Axioms)

A variety of useful facts can be derived from just three
axioms:

. 0=sPA)=1
. P(true) =1, P(false)=0
. P(AvB)=P(A)+P(B)-P(AAB)

16



Axioms of Probability
(Kolmogorov’s Axioms)

* A variety of useful facts can be derived from just three
axioms:

1. 0<PA)<1
2. P(true) =1, P(false) =0
3. PAvB)=P(A)+P(B)-P(AAB)

There have been several
other attempts to provide a
foundation for probability
theory. Kolmogorov’s axioms
are the most widely used.

Examples - Head / tail
Example - dice
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P(-A) = 1 - P(A)
?

Using the Axioms

* How can we use the axioms to prove that:

1-P(A)
=1 -(-P(=A) + P(Av —A) + P(A A —A))

=1-(-P(-A)+1+0)
Ais true”, “Aand not A is false” |

= P(-A)

[Using rule 3]
[Using rule 2, and the knowledge “A or not

[Cleaning up]
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Priors

Degree of belief
in an event in the
absence of any
other information

No rain

P(rain tomorrow) = 0.2

P(no rain tomorrow) = 0.8
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Conditional Probablity

What is the probability of an event given knowledge of
another event

Example:

- P(raining | sunny)

- P(raining | cloudy)

- P(raining | cloudy, cold)
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Conditional Probability

« P(A=1|B =1): The fraction of cases where A is true if

B is true

P(A=0.2) P(A|B = 0.5)
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Conditional Probability

In some cases, given knowledge of one or more

random variables we can improve upon our prior

belief of another random variable
For example:

p(slept in movie) =

p(slept in movie | liked movie) =

p(didn’t sleep in movie | liked movie) =

p(slept in movie) = 0.5
p(slept in movie | liked movie) = 1/3
p(didn’t sleep in movie | liked movie) = 2/3

Liked | Slept |P
movie

1 1 0.2
1 0 0.4
0 0 0.1
0 1 0.3
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Joint Distributions

* The probability that a set of random

variables will take a specific value is their

joint distribution.
* Notation: P(A A B) or P(A,B)
+ Example: P(liked movie, slept)

Liked Slept P
movie

1 1 0.2
1 0 0.4
0 0 0.1
0 1 0.3
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Joint Distribution (cont)

P(class size > 20) = 0.5

P(summer) =

Evaluation of classes

P(class size > 20, summer) = ?

Time (regular =2, | Class size | Evaluation
summer =1) (1-3)

1 10 2

2 34 B

1 12 2

2 65 1

2 15 3

2 43 1

1 13 8

2 51 2
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Joint Distribution (cont)

P(class size > 20) = 0.5
P(summer) = 3/8

Evaluation of classes

P(class size > 20, summer) = 0

Time (regular =2, | Class size | Evaluation
summer =1) (1-3)

1 10 2

2 34 B

1 12 2

2 65 1

2 15 3

2 43 1

1 13 8

2 51 2
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Joint Distribution (cont)

P(class size > 20) = 0.5
P(eval=1)="7?

P(class size > 20, eval = 1) = ?

Evaluation of classes

Time (regular =2, | Class size | Evaluation
summer =1) (1-3)
1 10 2
| 2 34 8
1 12 2
| 2 65 1
2 15 3
| 2 43 1
1 13 3
|2 51 2
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Chain Rule

» The joint distribution can be specified in terms of
conditional probability:
P(A,B) = P(A|B)*P(B)
+ Together with Bayes rule (which is actually derived from

it) this is one of the most powerful rules in probabilistic
reasoning
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Bayes Rule

* One of the most important rules for Al usage.
» Derived from the chain rule:
P(A,B) =P(A|B)P(B) = P(B | A)P(A)

* Thus,
P(B| A)P(A)
P(A B) = (B A)P(
P(B)
Thomas Bayes was
an English
clergyman who set
out his theory of

probability in 1764.

Very simple rule, but very important.
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Bayes Rule (cont)

Often it would be useful to derive the rule a bit
further:

P(B| A)P(A) _ P(B| A)P(4)
P(B) > P(B| A)P(A)

/'P(B,A=1> P(B.A=0)

Thie raciilte from-
T 1IN NIl TV,

I

P(4 B)=
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Conditional Independence

« A and B are independent
iff
P(A|B) = P(A)
or P(B|A) = P(B)
or P(A, B) =P(A) P(B)

3 different ways of rephrasing the same idea.
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Bayes' Rule and Conditional
Independence

Naive Bayes modei:

P(Cause,Effect,, ... ,Effect,) = P(Cause) m,P(Effect|Cause)

ry v\

* Total number of parameters is linear in n

Naive Bayes assumes conditional independence. It makes life a LOT easier.
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Important Points

Uncertainty
Handling uncertainty
Random variables
Chain rule

Bayes rule

Joint distribution, independence, conditional
independence
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