Lecture 4:
Local/Stochastic Search

Local Search
Given:
+ A set of states (configurations) S = {X,,...,Xj;}
» A function that evaluates each state: Eval(X)

Find global maximum: X* such that Eval(X®) is
greater than all Eval(X;) for all values of X;

Eval(X)

In This Lecture

» Either set of configurations too large to be
enumerated explicitly

* Or computation of Eval(.) may be expensive

* Therefore we cannot find the maximum of Eval(.)
by simply trying out all states

» Solutions with similar values of Eval(.) are
considered equivalent for the problem at hand

* We do not care how we get to X* (the path), we
care only about the description of the
configuration X*

Up until now we cared about the path. Now we don't. We're in charge, so we can
do that.

Real-World Examples

¥

« VLSI layout:

— X = placement of components + routing of
interconnections

— Eval = Distance between components +
%unused + routing length + ?

Too many configurations to look at them all

Once we find the best configuration, we don’t really care about the path to the
solution.

Real-World Examples

* Scheduling: Given m machines, n jobs
+ X = assignment of jobs to machines
» Eval = completion time of the n jobs (minimize)

Example: TSP (Traveling Salesperson)
ppo—
0 e'e
X,={1253674)
« Configuration X = Path through all the nodes

e Eval = Length of path
 Size of search space = (N-1)!/2

TSP: You, the salesperson, wants to travel through every city once in the cheapest
way possible.

(N-1)!/2 is correct because you don’t care about the starting city (hence (N-1)!
instead of N!), and you don’t care about the direction (hence the /2)

Example: SAT (SATisfiability)

clause

—-AvCvD
BvDv—-E
—Dv —=E
literal —Av—-CVvE
A B |[C D |[E |Eval
X, |true |true |false|true |false| 5
X, |true |true |true |true |true | 4

Configuration: Assignment of true/false to each variable

Eval: Number of clauses satisfied

Real world examples of
SAT problems?

Model checking

Mine sweeper

Sudoku

College class scheduling

Example: N-Queens

Eval(X) =5 Eval(X) = 2

Find a configuration
in which no queen
can attack any
other queen

What’s Eval() here?

Eval(X) = 0

NN configurations (One queen per column)
Eval function is number of ways a queen can attack another queen

Local Search

1. X, € Initial state

2. Repeat until we are “satisfied” with
the current configuration:

3. Evaluate some of the neighbors in
Neighbors(X:)

4. Select one of the neighbors X, ,

5. Move to X, ,

10

The definition of the Search
neighborhoods is not obvious
or unique in general. The
performance of the search
algorithm depends critically on @
the definition of the
neighborhood whichis not gre “Satisfied” With
straightforward in general.

LUIG VU unlyiguraticr .
3. Evaluate | ome of the; = :
. ngredient 2. Stopping
Neighbors(X;) condition
4. Select one of the neighbors X, ,

5 MOVG Ingredient 1. Selection

strategy: How to decide
which neighbor to accept

Lots of questions to answer

11

Simplest Example

[T T]

Global optimu Local optimum
Eval(X*) 2 Eval(X) Eval(X*) 2 Eval(X)
for all Xs for all Xs in

Neighbors(X)

60
50+
40+
30+

20+

I I I I 1 I I L]
0 10 20 30 50 80 90 100

S={1,...,100}
Neighbors(X) = {X-1,X+1}

Start at red rectangly thing

Look at your left neighbor X-1, and your right neighbor X+1 and go whichever way is
better.

You get stuck in a local optimum, though. Phooey

Most Basic Algorithm: Hill-
Climbing (Greedy Local Search)

« X € Initial configuration

* lterate:
1. E € Eval(X)
2. 4 €< Neighbors(X)
3. Foreach X;in /4
E; & Eval(X))
4. If all E;’s are lower than E
Return X
Else
i*=argmax; (E) X<& X. E<E,.

Called hill climbing because you always try to go up hill.

Neighbors could be more than just one left and one right. You could look much
further.

Problem, however, is getting stuck in local optimum

More Interesting Examples
How can we define Neighbors(X)?

Av-BvC
-AvCvD
SAT BvDvVv-E
-Cv-Dv-E
—-Av-CVE

N-Queens

For SAT, we could say that neighbors are configurations with one variable changed.
For TSP, we could say that neighbors are configurations with two edges swapped.

14

TSP Moves

“2-change” 2>

Invert the order of
the corresponding
vertices

O(N?) neighbors, because there are (n choose 2) possible pairs of edges to swap

15

“3-change” > O(N?)
neighborhood

n choose 3 is O(N3)

16

Issues

Trade-off on size of neighborhood:

« Larger neighborhood = better chance
of finding a good maximum but may
require evaluating an enormous
number of moves

« Smaller neighborhood = smaller
number of evaluations but may get
stuck in poor local maxima

17

Multiple “Poor” Local Maxima

18

|) >

Plateau = constant region of Eval(.)

No one likes plateaus

19

Eval(X)

To get from X, to X* you need to first go down...so X, is a local optimum

20

Remarks

« How much memory is used?

« All we can hope is to find the local
maximum “closest” to the initial
configuration. Can we do better than
that?

Memory used: very little...constant amount...pretty much the size of the
neighborhood

21

Stochastic Search:
Randomized Hill-Climbing

« X < Initial configuration

 lterate:
1. E € Eval(X)

2. X’ € one configuration randomly
selected in Neighbors (X)

3. E’ € Eval(X))

Until when?

. 7>
4. E E’ Critical change: We
XX no longer select the
E & E’ best move in the

entire neighborhood

22

WALKSAT

Iterate until all clauses are satisfied or
max iterations:
1.Select an unsatisfied clause Random
2.With probability p: walk part
Select a variable x; at random
3.With probability 1-p:

Select the variable x; such that changing x; will
unsatisfy the least number of clauses (Max of

Eval(X))
4.Change the assignment of the selected
variable x;

Greedy part

One of the best algorithms for SAT

In this algorithm, you don't always go uphill. When you randomly pick a variable, it
could cause you to go downhill!

X; is a variable in the unsatisfied clause

Simulated Annealing

1. E € Eval(X)

2. X’ < one configuration randomly
selected in Neighbors (X)

3. E’ € Eval(X’)

4. FE’Z E Critical change: We no longer
) - move always uphill. Next
X< X question: How to choose p?
E<E’
Else accept the move to X’ with some
probability p:
X< X
E<E’

From Wikipedia (http://en.wikipedia.org/wiki/Simulated_annealing):

The name and inspiration come from annealing in metallurgy, a technique involving
heating and controlled cooling of a material to increase the size of its crystals and
reduce their defects. The heat causes the atoms to become unstuck from their initial
positions (a local minimum of the internal energy) and wander randomly through
states of higher energy; the slow cooling gives them more chances of finding
configurations with lower internal energy than the initial one.

24

How to set p? Intuition

E=E(X)
E - E’is large: ltis E — E’is small: It is likely that
more likely that we are we are moving toward a
moving toward a shallow maximum that is likely
(promising) sharp to be a (uninteresting) local
maximum so we don’t maximum, so we like to move
want to move downhill downhill to explore other parts
too much of the landscape

25

Choosing p: Simulated Annealing
» If E’2 E accept the move
* Else accept the move with probability:

p=e (E-E)T

« Start with high temperature T and decrease T
gradually as iterations increase (“cooling
schedule™

Increasing T

Increasing |AE]|

This temperature stuff is they metaphor-y part.

26

Simulated Annealing
X < Initial configuration
T < Initial high temperature
Iterate:
1. Do K times:
E & Eval(X)

X’ € one configuration randomly selected in
Neighbors (X)

E’ €< Eval(X’)
fFE’2ZE
X € X' E € E’;
Else accept the move with prob p = e (E-E)T;
X € X E € E’;
2. T&CaT 00

alpha <1

As t goes down, probability p goes down. And as p goes down you take fewer
chances.

Stopping condition depends on the problem.

27

Simulated Annealing
X < Initial configuration
T < Initial high temperature

Iterate: Iterate a number of times
1. Do K times: keeping the temperature fixed
E & Eval(X)

X’ € one configuration randomly selected in
Neiahbors (X)
E’ ¢ Progressively decrease the temperature
using an exponential cooling schedule:
If E T(n) = o T with o < 1
X - < FE’;

Else acc «ne move with prob p =e (E-EVT;

X & X’; E € 120> Greedy hill climbing
2.T<aT T = 20 - Random walk

28

T T T T

rT = 158975

‘
8
:
-
I
-
N
)
N
~

1 8ok

4 70k

1 sok

/

1 sok

Iteration 150:
Random downhill
moves allow us to
escape the local
extremum

1 a0k

Starting point: We move
most of the time uphill

4 20k

L L L L L L L L L L L [L L L L L L L L L s

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Basic Example

100

©
8

FT = 11.5893
sol
70l
6ol
sol
sl
30l

20+

100

FT =3.2731

Iteration 180: Random
downhill moves have
pushed us past the local
extremum

Iteration 800: As T
decreases, fewer downhill
moves are allowed and we

stay at the maximum

30

120

100~

80

60 -

40

20+

0

Basic Example

E

Note that larger
deviations from
uphill search are
allowed at high
temperature

Temperature

—______

Iterations

0 100 200 300 400 500 600 700 800 900

31

Where does this come from?

If the temperature of a solid is T, the probability of
moving between two states of energy is:

e —AEnergylkT
If the temperature T of a solid is decreased slowly, it will

reach an equilibrium at which the probability of the solid
being in a particular state is:

Probability (State) proportional to € ~Energy(State)/kT

Boltzmann distribution > States of low energy relative to
T are more likely

Analogy:
— State of solid <> Configurations X
— Energy <-> Evaluation function Eval(.)

32

A TSP Example

N =13 nodes (in a circle)
Repeat K = 100N times
Optimal configuration has E = 25

Starting configuration has E = 55

33

A TSP Example

Note that larger deviations from
downhill search are allowed at
high temperature

E

50
40
30

20

mWU re

1 1 1 1 1 1 I J
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Iterations

Energy of the configurations as the algorithm runs

9.0.0.0.0.0.
OOOOCHHOCHD
CH DO
CHDOMOO RO
(DR DD
LR ZiE RS Lo,

FRRHCLIRET

Another Example

1

Initial state
N =13 nodes

Repeat K = 100N times

36

Another Example

swre

1 1 1 J
0 1000 2000 3000 4000 5000 6000

Iterations

37

wemm— PPV VY
PYXrEyyyryrry
FYYEYFEErry
Wﬁ%ﬁﬁ%ﬁﬁfﬁ
FYEFFEY Yy e
W%%Mﬁ%%ﬁfﬁ
N 3dddddddd

What can we say about

convergence?
* In theory:

. . *
Iim lim Pr(X(T,K)e S)=1
T'—>0 K—>w
In words: Probability that the state
reached after K iterations at
* In practice: temperature T is a global optimum

— Perform a large enough number of iterations
(K “large enough”)

— Decrease temperature slowly enough (a
“close enough” to 1)

— But, if not careful, we may have to perform an
enormous number of evaluations

“Belongs to S*” just means an optimal solution

So...if you run an infinite number of iterations you will eventually find the optimal
solution. Note...the limit as T goes to 0 does NOT mean T = 0.

Simulated annealing is a useful algorithm that is actually used in real life, unlike
most things Luis talks about

Simulated Annealing
X € Initial configuration
T & Initial high temperature

:te:;':’e;(.. Many parameters
. | .
need to be tweaked!!
E & Eval(X)

X’ € one configuration randomly selected in
Neighbors (X)

E’ €< Eval(X’)
fFE’2ZE
X € X' E € E’;
Else accept the move with prob p = e -(E-E)T;
X € X E € E’;
2.T<CaT

40

Genetic/Evolutionary
Algorithms

41

Genetic Algorithms

Configurations = Individuals in a population
Eval = measure of fithess

Least fit individuals DIE without reproducing
Most fit individuals reproduce more often

Each generation should be better than the past!

42

GA: Implementation

» Configurations represented by strings:

X=|10(0/1/1/0/01

* Analogy:
— The string is the chromosome representing the
individual
— String made up of genes
— Configuration of genes are passed on to offsprings

— Configurations of genes that contribute to high
fitness tend to survive in the population

« Start with a random population of P configurations and
apply two operations
— Reproduction: Choose 2 “parents” and produce 2
“offsprings”
— Mutation: Choose a random entry in one (randomly
selected) configuration and change it

Genes are contiguous groups of 1's and 0's

43

Genetic Algorithms: Reproduction

10(0/1(1/0/0(1

Parents:

10(1/1(0/0/0(1

44

Genetic Algorithms: Reproduction

Parents:

Select random
crossover point:

1/0(0/1/1/0[01
1/0(1/1/0/0[01
}
1/0/0(1/1/0/0|1
101
1

45

Genetic Algorithms: Reproduction

10(0/1(1/0/0(1

Parents:

1/0(1/1/0/0[01
}

Selectrandom (1/0(0|1/1/0|0 |1
crossover point:

Offsprings: |1/ 0 |0 110({1(1|1/0|0|1

An offspring receives part of the
genes from each of the parents

46

Genetic Algorithms: Mutation

110/0{1(1/0(0

10(01/0/0(0 1(1/1/0/0 ojf1|1(0/0

11{1/1{1/0|0
Select a Select a Change
random random that entry
individual entry

Implements random deviations from inherited

traits

Corresponds loosely to “random walk”:
Introduce random moves to avoid local extrema

47

Basic GA Outline

+ Create initial population X = {X;,..,Xp}

* lterate:
1. Select K random pairs of parents (X,X’)
2. For each pair of parents (X,X’):

1.1 Generate offsprings (Y;,Y,) using
crossover operation

1.2 For each offspring Y;:
Replace randomly selected element of
the population by Y;
With probability p:
Apply a random mutation to Y,
* Return the best individual in the population

48

Basic GA Outline
* Create initia’ stopping condition is »Xp}
* lterate: not obvious?
1. Select K random pairs of parents (X,X’)

2. For each pair of porents Poss-ible strategy:

1.1 Generate offspr. Select the best rP
Variation: Y©~ gperation individuals (r < 1) for

i duction and
Generate only ‘ach offspring) L[
one offspring discard the rest >

-.-r-ace randomly s(|mplements selection
the population by Y of the fittest

With probability p:
Apply a random mutation to Y,
* Return the best individual in the population

49

Genetic Algorithms: Selection

Discard the least-fit individuals through threshold
on Eval or fixed percentage of population

Select best-fit (larger Eval) parents in priority

Example: Random selection of individual based
on the probability distribution

Pr(individual X selected) = Eval(X)

> Eval(Y)

Y e population

Corresponds loosely to the greedy part of hill-
climbing (we try to move uphill)

Ways to do selection

50

Basic GA Outline

+ Create initial population X = {X;,..,Xp}

* lterate:
Hill-climbing component: Try to

1. Select K randon : ;
. move uphill as much as possible
2. For each pair of p2=" . 5 \A,X):

1.1 Generate offsprings (Y;,Y,) using
crossover operation
Random walk ffspring Y;:

component: Move 1domly selected element of
randomly to escape tion by Y
| i

shallow local maxima
wiu o uability pe

Apply a random mutation to Y,
* Return the best individual in the population

51

How would you set up these
problems to use GA search?

Av—-BvC

—-AvCvD
SAT BvDvVv—E
—-Cv-Dv—-E
—-Av-CVE

N-Queens

How to encode configurations as strings of 1’s and 0’s?
You want things that should stick together to be next to each other in the string

52

[
0 05 1 15 2 25 3 35 4 45 5

N=13

P =100 elements in
population

p = 4% mutation rate
r=50% reproduction
rate

TSP Example

30

Average cost in population

Minimum cost

f; 10 1‘5 2‘0 2‘5 - 3‘5 46 4‘5 56
Generation

Optimal solution reached
at generation 35

53

3

S ODTTRN 1.
OHDBIODOHE |
BSBROBEG |

@%@%ﬁ%@@@%ﬁ

SRR
SRS TSI R T
SRR BAIR LIS
BRI RS
BN BRTRSTER

54

LB AADADALADAND
LoD DA D
(DA DD
DOODODOODD
{73 ﬁj‘;ﬁ"?‘w"f‘xﬁ‘% {3/ M/}
DD DDA
{PHADADATADAATADI AT
(T A DA A
QROOTDAH DA B
OO DIB LT

55

LA IO
$0.0.0.¢.0.0.0.0.0
9000000006
OQOOOOQOQ@

Q@Owuuu@@@
IO H 2
SHWCRADAD BN TS
{STHP D STHET
ONZOSSRSES

56

20

0° 05 1 15 2 25 3 35 4 45 5

Converges and remains 2

stable after generation 23

0.4% difference:
GA =11.801
SA =11.751

But: Number of operations
(number of cost evaluations)
much smaller (approx. 2500)

Another TSP Example

Average cost in population

Minimum cost

s 0 1 S s Stabilizes at
generation 23

20 22 24

57

WYY YYYYY
FPEFPPPPPYEY
PP EY
Mﬁﬁﬁﬂ%}ﬁ}ﬁkﬁ}ﬂkﬂ}%ﬁ

%%%W}ﬁﬁ’ﬁyﬁf
YIEFEPyrryryryyy
FPrEFFPrYPEFY
PrrrreF¥HryF

58

GA Discussion

* Many parameters to tweak: u, P, r

* Many variations on basic scheme. Examples:
— Multiple-point crossover
— Dynamic encoding
— Selection based on rank or relative fitness to least
fit individual
— Multiple fitness functions
— Combine with a local optimizer (for example, local
hill-climbing) - Deviates from “pure”
evolutionary view
* In many problems, assuming correct choice
of parameters, can be surprisingly effective

People were extremely excited 20 years ago...not so much now...GA don’t work
very well. But they are cool.

Encoding a problem for a GA is very difficult to do well.

Here's a quote from Russell + Norvig:
"[1t] is not clear whether the appeal of genetic algorithms arises from their
performance or from their aesthetically pleasing origins in the theory of evolution."

GA Discussion

* Why does it work at all?

* Limited theoretical results (informally!):

— Suppose that there exists a partial assignment of
genes s such that:

Average of Eval(X) > Average of Eval(Y)

X contains s Y ePopulation

— Then the number of individuals containing s will
increase in the next generation
+ Key consequence: The design of the
representation (the chromosomes) is critical to
the performance the GA. It is probably more
important than the choice of parameters of
selection strategy, etc.

60

Summary
Hill Climbing
Stochastic Search
Simulated Annealing
Genetic Algorithms

Class of algorithms applicable to many practical
problems

Not useful if more direct search methods can be
used

The algorithms are general black-boxes. What makes
them work is the correct engineering of the problem
representation

— State representation

— Neighborhoods

— Evaluation function

— Additional knowledge and heuristics

61

(Some) References

Russell & Norvig, Chap. 4

Aarts & Lenstra. Local Search in Combinatorial
Optimization. Wiley-InterScience. 1997.

Spall. Introduction to Stochastic Search and
Optimization. Wiley-InterScience. 2003.

Numerical Recipes (http://www.nr.com/).

Haupt&Haupt. Practical Genetic Algorithms. Wiley-
InterScience. 2004.

Mitchell. An Introduction to Genetic Algorithms
(Complex Adaptive Systems). MIT Press. 2003.

http://www.cs.washington.edu/homes/kautz/walksat/

62

