
Hey guess what you’re learning pseudoscience.

1

2

Are they going to kill us? Will they be slaves? That’s what we’re working towards.

3

4

5

Many problems can be encoded this way

6

How to encode as search problem?

7

Make a graph of possible states.

State: config of puzzle

Transition: up to 4 poss moves from each state

Solvable in 22 steps on average

But state space is really big. 2*1^5.

8

Allowed motions: You can move up, down, left, or right. You can’t move through

9

walls.

In the real world the graph is really really big. V large # states

10

11

12

13

14

15

Keep in mind storing graph in mem is not an option.

16

17

18

19

20

21

22

The “right” way to implement

23

24

25

Which is better? Depends on graph. For example, for a dense tree with start at root

26

and goal at leaf then backwards is better. Others may vary.

Guaranteed lowest cost IF all edges have uniform, nonnegative cost.

27

28

Stopping: when intersect(V,V’) nonempty

29

Optimal if all costs uniform

30

Note: Going backwards isn’t always possible

31

32

33

Complexity depends on the implementation of the PQ. This complexity is for a min

34

heap implementation. For a survey of different PQ implementations see

http://www.theturingmachine.com/algorithms/heaps.html

35

36

37

Add cost from p to q to the value of p

38

The value for item e has been updated from 9 to 5. This is generally not supported

39

by a PQ, but there are ways to fake it.

40

41

42

43

44

45

If p is not in the queue but visited, we already visited it.

46

(If costs aren’t negative or 0, this works. In fact this is why it won’t work if costs are

negative or 0) Note keep in memory everything we’ve seen.

47

48

49

50

51

Can’t stop until you POP the goal!

52

53

Why is this correct?

54

Log(Q) is due to priority queue

Each edge cost >= epsilon, therefore B^(C/epsilon) is upper bound on number of

steps.

Why no log in space? Log has to do with popping priority queue, but space is just

storing the thing (so multiply space by 2)

55

You could visit a lot of nodes (ex driving)

56

57

58

59

60

61

62

63

64

65

66

67

68

69

What’s the problem? Cycles.

70

Didn’t just remember path (in the stack), also remembered which successor each

node has already tried.

71

72

73

Which should you do?

74

Current path: at least we won’t loop forever, and better for memory usage.

Memdfs means you’d have to keep track of whole graph, and that’s a lot.

75

In PCDFS you can visit same node twice (though not in the same path). So no

76

luxury of N

PCDFS is same storage as DFS (we’re already storing the path in the stack)

MEMDFS you would have to store whole graph. However, the time complexity

could be as low as N.

77

78

79

Why does it not matter to do the same stuff over and over? Exponential growth

80

means the first levels aren’t all that bad.

81

82

83

