Lecture 2: Uninformed Search
(Russell and Norvig Chapter 3)

Hey guess what you’re learning pseudoscience.

Correct URL of Class Website:

www.andrew.cmu.edu/course/15-381-f09/index.html

What happens when
computers become as
intelligent as humans?

Are they going to kill us? Will they be slaves? That’s what we’re working towards.

Lecture 2: Uninformed Search

@) Bing - Morilla Firefox
File Edit View Higtory Bookmarks Tools Help

9 C 4 B http//www.bing.com/

© Bing

Live Search is evolving. Tour Bing.

Done

A Search Problem

Find a path from START to GOAL
OR
Find the minimum number of transitions

Many problems can be encoded this way

Example

How to encode as search problem?

Make a graph of possible states.

State: config of puzzle

Transition: up to 4 poss moves from each state
Solvable in 22 steps on average

But state space is really big. 2*115.

State: Configuration of the puzzie

Transitions: Up to 4 possible moves
from each states (up,
down, left, right)

Solvable in 22 steps on average

But: 1.8 x105 states (1.3 x 102 states
for the 15-puzzle)

Cannot represent a set of states
explicitly

Example: Robot Navigation

States =
positions in the map

) Transitions =
GOAL allowed motions

x

\

START

Navigation: Going from point START to
point GOAL given a (deterministic) map

Allowed motions: You can move up, down, left, or right. You can’t move through
walls.

Other Real-Life Examples

Scheduiing/Science Driving

Don’t necessarily know explicitly
the structure of a search problem

In the real world the graph is really really big. V large # states

10

10cm resolution
4km?2=4 108 states

11

What We are Not
Addressing (yet)

* Uncertainty/Chance: State and
transitions are known and deterministic

 Game against an adversary
» Multiple agents and cooperation

» Continuous state space: For now, the
set of states is discrete

12

A Search Problem

13

Formulation

Q: Finite set of states
S c Q: Non-empty set of start states
G c Q: Non-empty set of goal states
succs: Function Q »> AQ)
succs(s) = Set of states that can be reached from s in one step

cost: function Q x Q —» Positive Numbers
cost(s,s’) = Cost of taking a one-step transition from s to s’

Problem: Find a sequence {s,,...,S«} such that:
s, €98
sy € G
Si+1 € SUCCS(S))
X cost(s;, s;.1) is the smallest among all possible
sequences (desirable but optional)

14

Example

= [START, GOAL, a, b, ¢, 4,
= {START}, G = {GOAL}

succs(d) = {b,c}, succs(START) = {p,e,d}, succs(a) = NULL
cost(s,s’) = 1 for all transitions

a fhnonr
Sy @y ily Uy Yy 1§

15

Desirable Properties

Completeness: An algorithm is complete if it is
guaranteed to find a path if one exists

Optimality: The total cost of the path is the lowest
among all possible paths from start to goal

Time and Space Complexity

Keep in mind storing graph in mem is not an option.

16

Breadth-First Search

Label all states that are 0 steps from S.
Call that set V_

17

= 0 steps
— 1 step

Breadth-First Search

Labeil the successors of the states in V,
that are not yet labeled as the set V, of
states that are 1 step away from the start

18

Breadth-First Search

= 0 steps
— 1 step /@Y_\
- 2 steps

Labei the successors of the states in V,
that are not yet labeled as the set V, of
states that are 2 steps away from the start

19

Breadth-First Search

= 0 steps
— 1 step /@Y—\
- 2 steps

3 steps

Labei the successors of the states in V,
that are not yet labeled as the set V. of
states that are 3 steps away from the start

20

Breadth-First Search

= 0 steps
— 1 step /@Y—\ @

Stop when goal is reached in the current
expansion set. In this case goal can be
reached in 4 steps.

21

= 0 steps
— 1 step

Recovering the Path

A @

Record the predecessor when labeling a state

When labeling GOAL, | was expanding the
neighbors of f, so f is the predecessor of GOAL

Final solution: {START, e, r, f, GOAL}

22

Using Backpointers

A backpointer previous(s) points to the node that

stored the state that was expanded to label s

The path is recovered by following the
backpointers starting at the goal state

The “right” way to implement

23

Example: Robot Navigation

States =

positions in the map

2w Transitions =

GOAL allowed motions

x

\

START

Navigation: Going from point START to
point GOAL given a (deterministic) map

24

Breadth-First Search

V, = S (the set of start states)
previous(START) = NULL
k=0

while (no goal state is in V, and V, is not empty):
Vi+1 = empty set
For each state s in V,
For each state s’ in succs(s)
If ' has not already been labeled
Set previous(s’) = s; add s’ into V4
k =k+1

LN e mimmimdi m ke L TALL LI
IV Is CITply OUlput rAILURE

else build the solution path thus:
Define S, = GOAL, and for all i < k, define S, = previous(S))
Return path = {S;,.., S}

25

Properties

* BFS can handie muitipie start and goal
states
« Can work either by searching forward

from the start or backward for the goal
(forward/backward chaining)

* (Which way is better?)

1 < = = L — AL

* Guaranteed tc find the iowest-cost path
in terms of number of transitions?

Which is better? Depends on graph. For example, for a dense tree with start at root
and goal at leaf then backwards is better. Others may vary.

Guaranteed lowest cost IF all edges have uniform, nonnegative cost.

26

Complexity
B = Average number of successors (branching factor)
L = Length from start to goal on shortest path

Algorithm Complete Optimal Time

BFS | Breadth First
Search

Complexity

B = Average number of successors (branching factor)
L = Length from start to goal on shortest path

Algorithm

BFS | Breadth First
Search

Complete Optimal Time
Y Y, If all O(BY) O(BY)

trans. have
same cost

28

Bidirectional Search

* BFS search simultaneously forward

from START and backward from GOAL
« What'’s the stopping criterion?
« Under what condition is it optimal?

Stopping: when intersect(V,V’) nonempty
Optimal if all costs uniform

29

Complexity

B = Average number of successors (branching factor)

L = Length from start to goal on shortest path

BFS

Algorithm Complete Optimal Time

Breadth
First
Search

Y Y, if all O(BL)
trans. have
same cost

Space
O(BY)

BIBFS

Bi-
directional
BFS

30

Complexity

B = Average number of successors (branching factor)
L = Length from start to goal on shortest path

Algorithm Complete Optimal Time Space
BFS | Breadth Y Y, if all O(Bh) O(Bt)
First trans. have
Search same cost
BIBFS | Bi- Y Y, If all 0(2B2) 0(2B2)
directional trans. have
BFS same cost

Niajor savinys wiiell

HYP N - GO IS NN [»S

[IEp] . - P P o il
PIUIrecuornidl sedrulil 15 pousSsivie

because 2BY2<< BL

If B=10, L = 6, then 22,200 states generated vs ~107

Note: Going backwards isn’t always possible

31

Counting Transition Costs

BFS finds the shortest path in number of steps
but does not take into account transition costs

New field to find least cost path: At iteration k,
d(s) = least cost of path to s in k or fewer steps

32

Uniform Cost Search

« Strategy to select state to expand next:
use the state with the smallest value of
g() so far

» Use priority queue for efficient access
to minimum g at every iteration

33

Priority Queue

* Priority queue = data structure in which data of
the form (item, value) can be inserted and the

- m

minimum value item can be retrieved efficiently

» Operations:
— Init (PQ): Initialize empty queue
— Insert (PQ, item, value): Insert a pair in the queue
— Pop (PQ): Returns the pair with the minimum value

* In our case:
— item = state
— value = current cost g()

Complexity: O(log(number of pairs in PQ))
for insertion and pop operations

Complexity depends on the implementation of the PQ. This complexity is for a min
heap implementation. For a survey of different PQ implementations see
http://www.theturingmachine.com/algorithms/heaps.html

Uniform Cost Search

PQ = Current set of evaluated states

Value (priority) of state = g(s) = current
cost of pathto s

Basic iteration:
1. Pop the state s with t
We add the

cost from PQ
successors of s that
2. Evaluate the path coEEEATEIRVIE TN
successors of s w._ visited and we

3. Add the successo update the cost of
. those currently in

the queue

35

PQ = {(START,0)}

path cost from PQ

2. Evaluate the path cost to all
the successors of s

3. Add the successors of s to PQ

36

PQ = {(p,1) (d,3) (e,9)}

path cost from PQ

2. Evaluate the path cost to all
the successors of s

3. Add the successors of s to PQ

37

PQ = {(d,3) (e,9) (q,16)}

path cost from PQ

2. Evaluate the path cost to all
the successors of s

3. Add the successors of s to PQ

Add cost from p to q to the value of p

38

PQ = {(b,4) (e,5) (c,11) (q,16)}

path cost from PQ
2. Evaluate the path cost to all

the successors of s
3. Add the successors of s to PQ

The value for item e has been updated from 9 to 5. This is generally not supported
by a PQ, but there are ways to fake it.

e
Ly O £\

Important: We realized that
going to e through d is
cheaper than going to e

directly, so the value of e is

updated from 9 to 5 and it

15 L moves up in PQ

PQ = {(b,4) (e,5) (c,11) (q,16)}

path cost from PQ

2. Evaluate the path cost to all
the successors of s

3. Add the successors of s to PQ

40

PQ = {(b,4) (e,5) (c,11) (q,16)}

path cost from PQ
2. Evaluate the path cost to all

the successors of s
3. Add the successors of s to PQ

41

path cost from PQ
2. Evaluate the path cost to all
the successors of s

3. Add the successors of s to PQ

42

path cost from PQ
2. Evaluate the path cost to all
the successors of s

3. Add the successors of s to PQ

43

path cost from PQ
2. Evaluate the path cost to all
the successors of s

3. Add the successors of s to PQ

44

PQ = {(q,10) (c,11) (r,14)}

path cost from PQ

2. Evaluate the path cost to all
the successors of s

3. Add the successors of s to PQ

45

_aun® - c
Important: We realized that j
going to g through 71 is

3 cheaper than going 1'-_‘

is updated from 16 to 10
and it moves up in PQ
p/ “

15

path cost from PQ

2. Evaluate the path cost to all
the successors of s

3. Add the successors of s to PQ

If p is not in the queue but visited, we already visited it.

(If costs aren’t negative or 0, this works. In fact this is why it won’t work if costs are

negative or 0) Note keep in memory everything we’ve seen.

46

PQ = {(q,10) (c,11) (r,14)}

path cost from PQ

2. Evaluate the path cost to all
the successors of s

3. Add the successors of s to PQ

47

PQ = {(c,11) (r,13)}

path cost from PQ

2. Evaluate the path cost to all
the successors of s

3. Add the successors of s to PQ

48

PQ = {(r,13)}

path cost from PQ

2. Evaluate the path cost to all
the successors of s

3. Add the successors of s to PQ

49

PQ = {(f,18)}

path cost from PQ

2. Evaluate the path cost to all
the successors of s

3. Add the successors of s to PQ

50

PQ = {(GOAL,23)}

path cost from PQ

2. Evaluate the path cost to all
the successors of s

3. Add the successors of s to PQ

51

Final path: {START, d, e, h, q, r, f, GOAL}

* This path is optimal in total cost even though it has more
transitions than the one found by BFS

* What should be the stopping condition?

* Under what conditions is UCS complete/optimal?

Can’t stop until you POP the goal!

52

L = Length from start to goal on shortest path
C = Cost of optimal path

Complexity

B = Average number of successors (branching factor)

Q = Average size of the priority queue

Algorithm Complete Optimal Time Space
BFS Breadth First Y Y, If all O(BhH O(Bt)
Search trans. have
same cost
BIBFS | Bi-directional Y Y, If all 0(2B2) 0(2BY2)
Breadth First trans. have
Search same cost
ucs Uniform Cost

Search

53

Complexity

B = Average number of successors (branching factor)
L = Length from start to goal on shortest path

C = Cost of optimal path

Q = Average size of the priority queue

Algorithm Complete Optimal Time Space
BFS Breadth First Y Y, If all O(BhH O(Bt)
Search trans. have
same cost
BIBFS | Bi-directional Y Y, If all 0(2B2) 0(2BY2)
Breadth First trans. have
Search same cost
([625) Uniform Cost Y, if Y, if O(log(Q)*BC%) O(BC%)
Search cost>e>0 cost>0

Why is this correct?
Log(Q) is due to priority queue

Each edge cost >= epsilon, therefore BA(C/epsilon) is upper bound on number of
steps.

Why no log in space? Log has to do with popping priority queue, but space is just
storing the thing (so multiply space by 2)

Limitations of BFS

95

factor

Limitations of BFS

« Memory usage is O(BL) in general
« Limitation in many problems in which

the states cannot be enumerated or
stored explicitly, e.g., large branching

 Alternative: Find a search strategy that
requires little storage for use in large
problems

You could visit a lot of nodes (ex driving)

56

Depth First Search

O F

o7

Depth First Search

O F

General idea:

» Expand the most recently expanded node if

it has successors

» Otherwise backup to the previous node on
the current path

J SAPESRIINTS IIVUST i

58

Depth First Search

O F

General idea:

» Expand the most recently expanded node if

it has successors

» Otherwise backup to the previous node on
the current path

J SAPESRIINTS IIVUST i

59

Depth First Search

O F

General idea:

» Expand the most recently expanded node if

it has successors

» Otherwise backup to the previous node on
the current path

J SAPESRIINTS IIVUST i

60

Depth First Search

7

General idea:

» Expand the most recently expanded node if

it has successors

» Otherwise backup to the previous node on
the current path

J SAPESRIINTS IIVUST i

61

Depth First Search

O F

General idea:

» Expand the most recently expanded node if

it has successors

» Otherwise backup to the previous node on
the current path

J SAPESRIINTS IIVUST i

62

Depth First Search

O F

General idea:

» Expand the most recently expanded node if

it has successors

» Otherwise backup to the previous node on
the current path

J SAPESRIINTS IIVUST i

63

Depth First Search

O F

General idea:

» Expand the most recently expanded node if

it has successors

» Otherwise backup to the previous node on
the current path

J SAPESRIINTS IIVUST i

64

Depth First Search

%

General idea:

» Expand the most recently expanded node if

it has successors

» Otherwise backup to the previous node on
the current path

J SAPESRIINTS IIVUST i

65

Depth First Search

O F

General idea:

» Expand the most recently expanded node if

it has successors

» Otherwise backup to the previous node on
the current path

J SAPESRIINTS IIVUST i

66

Depth First Search

O F

General idea:

» Expand the most recently expanded node if

it has successors

» Otherwise backup to the previous node on
the current path

J SAPESRIINTS IIVUST i

67

Depth First Search

O F

General idea:

» Expand the most recently expanded node if

it has successors

» Otherwise backup to the previous node on
the current path

J SAPESRIINTS IIVUST i

68

DFS Implementation

e 4 _\
ro\S)
|f s=GOAL
return SUCCESS
In a recursive
else . implementation, the
For all s’ in succs(s) program stack keeps
DFS (s’) track of the states in
return FAILURE the current path

s is current state being expanded,
starting with START

69

Depth First Search

START d

START d b

START db a

STARTd ¢ Q:; May explore the

START dc a same state over

START d e again. Potential
STARTder problem?

START derf

START derfc

START derfca Ao usade iS 10
START d e r f GOAL eI

,\/@\"{/\
START c

What'’s the problem? Cycles.

Didn’t just remember path (in the stack), also remembered which successor each

node has already tried.

70

Root: START state

Children of node s: All states in succs(s)

In the worst case the entire tree is explored > O(BLmax)
Infinite branches if there are loops in the graph!

71

Complexity
N = Total number of states
B = Average number of successors (branching factor)
L = Length from start to goal on shortest path
C = Cost of optimal path
Q = Average size of the priority queue
Lmax = Length of longest path from START to any state

Algorithm Complete Optimal Time Space
BFS Breadth First Y Y, if all o(BH o(BH
Search trans. have
same cost
BIBFS | Bi-directional Y Y, if all 0(2B2) 0(2B2)
Breadth First trans. have
Search same cost
[625) Uniform Cost | Y, if cost> | Y, if cost>0 O(log(Q)*BC=) O(BC%=)
Search 0
DFS Depth First
Search

L = Length from start to goal on shortest path

Complexity
N = Total number of states
B = Average number of successors (branching factor)

C = Cost of optimal path
Q = Average size of the priority queue
Lmax = Length of longest path from START to any state

Algorithm Complete Optimal

Time

BFS | Breadth First Y Y, if all O(BY O(BY

Search trans. have
same cost

BIBFS | Bi-directional Y Y, if all ‘ 0(2B2) 0(2B2)
Breadth First trans _have
Search For graphs

UCS | Uniform Cost | Y, if cost \without cycles)g(Q)*B=) O(BC%=)
Search 0 |

DFS | Depth First Y N O(BLmax) O(BL)
Search

73

DFS Limitation 1

* Need to prevent DFS from looping

* Avoid visiting the same states
repeatedly

* PC-DFS (Path Checking DFS):

— Don’t use a state that is already in the
current path
* MEMDFS (Memorizing DFS):
— Keep track of all the states expanded
so far. Do not expand any state twice

« Comparison PC-DFS vs. MEMDFS?

Which should you do?
Current path: at least we won’t loop forever, and better for memory usage.
Memdfs means you’d have to keep track of whole graph, and that’s a lot.

74

L = Length from start to goal on shortest path

Complexity
N = Total number of states
B = Average number of successors (branching factor)

C = Cost of optimal path
Q = Average size of the priority queue
Lmax = Length of longest path from START to any state

Algorithm Complet Optimal Time Space
(S

BFS Breadth Y Y, if all trans. O(BY) O(BY)
First Search have same cost

BIBFS | Bi- Direction. Y Y, if all trans. 0(2B2) 0(2B2)
BFS have same cost

ucs Uniform Y, ifcost> | Y, if cost>0 O(iog(Q)*B) O(B%*)
Cost Search 0

PCDFS | Path Check
DFS

MEMD | Memorizing

FS DFS

75

Complexity
N = Total number of states
B = Average number of successors (branching factor)
L = Length from start to goal on shortest path
C = Cost of optimal path
Q = Average size of the priority queue
Lmax = Length of longest path from START to any state

Algorithm Complet Optimal Time Space
(S

BFS Breadth Y Y, if all trans. O(BY) O(BY)
First Search have same cost

BIBFS | Bi- Direction. Y Y, if all trans. 0(2BY2) 0(2BY2)
BFS have same cost

ucs Uniform Y, ifcost> | Y, if cost>0 O(iog(Q)*B) O(B%*)
Cost Search 0

PCDFS | Path Check Y N O(BLmax) O(BL,s)
DFS

MEMD | Memorizing Y N O(BLmax) O(BLmax)

FS DFS

In PCDFS you can visit same node twice (though not in the same path). So no
luxury of N

PCDFS is same storage as DFS (we're already storing the path in the stack)

MEMDFS you would have to store whole graph. However, the time complexity
could be as low as N.

DFS Limitation 2
* Need to make DFS optimal

77

DFS Limitation 2

* Need to make DFS optimal “Depth-Limited

* IDS (Iterative Deepening Search):

Search”

— Run DFS by searching only paths of length
1 (DFS stops if length of path is greater

than 1)

— If that doesn’t find a solution, try again by
running DFS on paths of length 2 or less

— If that doesn’t find a solution, try again by
running DFS on paths of length 3 or less

— Continue until a solution is found

78

Iterative Deepening Search

79

Iterative Deepening Search

* Sounds horrible: We need to run DFS
many times

« Actually not a problem:
O(LB'+(L-1)B2+...+Bl) = O(Bt)

Nodes generated Nodes generated Nodes generated at
at depth 1 at depth 2 depth L

« Compare B! and Btmax
« Optimal if transition costs are equal

Why does it not matter to do the same stuff over and over? Exponential growth

means the first levels aren’t all that bad.

80

Iterative Deepening Search

« Memory usage same as DFS

« Computation cost comparable to BFS
even with repeated searches, especially
for large B.

« Example:
-B=10,L=5
— BFS: 111,111 expansions

—IDS: 123,456 expansions

81

N = Total number of states
B = Average number of successors (branching factor)

L = Length from start to goal on shortest path

C = Cost of optimal path
Q = Average size of the priority queue
Lmax = Length of longest path from START to any state

Algorithm | Complete | Optimal Time Space

BFS Breadth Y Y, if all trans. O(Bt) O(Bt)
First Search have same cost

BIBFS | Bi- Direction. Y Y, if all trans. 0O(2B2) 0O(2B2)
BFS have same cost

ucs Uniform Y, if cost > Y, If cost >0 O(log(Q)*B%%) O(BC%)
Cost Search 0

PCDFS | Path Check Y N O(BLmax) O(BL)
DFS

MEMD | Memorizing Y N O(BLmax) O(BLmax)

FS DFS

IDS lterative Y Y, If all trans. O(Bh) O(BL)
Deepening have same cost

82

Summary
Basic search techniques: BFS, UCS,
PCDFS, MEMDFS, ...
Property of search algorithms:
Completeness, optimality, time and
space complexity

Iterative deepening and bidirectional
search ideas

Trade-offs between the different
techniques and when they might be
used

83

