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I Resultant

The origin of the resultant lies in papers by Euler (1748) and Bezout (1764) for determining when two
polynomials have a non-trivial common factor. However, we will follow the elegant derivation by
Sylvester (1840). Let us start with a simple example.

Consider a system of quadratic equations

f= axl+arx+ay=0

g=byx*>+bix +by= 0

If it has a common solution, f and g must have a common factor /4

f=q % h
g=qxh
We can write
[ =g+ q

or
(a2x2+a1x + ao) (c1x + ¢) = (b2x2+b1x + bo) (=dy x = dp)
where coefficients ¢ and dj are unknown. Expand it and then collect terms wrt x
(azc1 +bydi) x> +(az co+ay c1 + by do+ by di) x> + (a1 co +ag c1 + by do + bo dy) x + ag co + bo do
Next, we equal coefficient by x to zero to get the following system

arc1+bydi =0
arcotajci+bydo+b1di =0
arco+apci+bido+bod =0
apco+body=0

or
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0co+arc1+0dy+bydi =0
arco+ajci+brdo+b1di =0
ajco+agci +bi1dy+bod; =0
apco+0 ci+bydy+0d; =0

or, in matrix form

0 an 0 b2 C0
ap ai b, b1 || e
ai agp b1 by || do
ao 0 b() 0 dl

The system has a non-trivial solution when the determinate is zero

0 ar 0 b2

az aj by by | _ 0
aj ao by by
ao 0 bo 0
By transposition
a ai aop 0
0 a ai ap | _ 0

by b bo 0
0 bz b] bO

This determinate is called the Sylvester resultant.
General case. Let
m n
flx) = Zak x* and glx) = Zbk xk
k=0 k=0
be non-constant polynomials.

Definition. The Sy/vester matrix of f and g is an (m + n) X(m + n) matrix of coefficients defined by

(assuming m = n)

Am Am-1 ves oo Am—n+1 Am—n cee  eee ao ees ves 0
0 an am_1 .. Am—nsl oo . a1 ap .. 0
0 e e Qm =1 eee oo Ap—1 ... a1 Qo
bn bn—] .es ces b] b() 0 .es 0. e ees O
0 bn bn_l vou .no bl b() vao 0. .no vao O
0 bu-1 ... b1 bo

Observation.



15-355: Modern Computer Algebra Symbolic Integration

The upper part (that involves only ay) has n = deg(g) rows.
The bottom part (that involves only b) has m = deg(f) rows.
Example. Consider
f) =x*-3x3+2x+1
gx) = ¥ -1

The Sylvester matrix is

S OO = O O -
SO — O O = W
S — O O = W o
|
— O O = W o
OO = O O N
O — O O N = O
—_o O O = O O

Definition. The resultant resy(f, g) of two univariate polynomials f and g over an intergral domain

(a commutative ring with identity having no zero-divisors) is the determinant of the Sylvester matrix.

For the above example, the determinate is

Det[

oOookrooRr
oOoOoOPrOORrRW
OPrOoOORrWwWOo
|
RPOOFWON
OO, OONZR
OPr OOMNRO
HOOO®RrOOo
eed

|-

and resultant is

Resultant[x4 -3x3+2x+1, x3-1, x]

|-

Exercise. Write the Sylvester matrix for

f(x):x4—3x3+2x+1

gx)=1
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We have showed so far
resy(f, 2) =0 = det(S) = 0
Theorem.

Two polynomials f and g have non-trivial common factors < res(f, g) = 0.
Proof- Let
m n
fx) = Zak x* and gx) = Zbk Xk
k=0 k=0
be non-constant polynomials and m = n. Then equation
usf+vsxg=0

deg(u) < deg(g)
deg(v) < deg(f)

has a solution iff / and g have common factors. Rewrite the above equation in a polynomial form
(un_l e+ uo) (am X" +...+ay) + (vm_l Xl vo) by x"+...+bp)=0

Expanding it and then equating coefficients by x to zero

Xm+n_1 . un_l am + v;n_l bn
+n-2 .
XS Up—1 Am-1 T Up-2 Am + Vi1 bm—l + Vm-2 bm
n—1.
X . Up—1a0 tUp—2a) + ... +uUgay-1+H»vo bn_l + Vq bn_z

gives the sytem of equation that can be written in a matrix form as follows

Am dm-1 - - Am-n+1  Am-n ao 0

0 aw am Am-n+1 a4 0

0 am Am-1 7| ar Qo
Up—1s «ees Uy Vin—1s ooy V =0
( n—1» > U0s Vim—1, > 0) bn bn—l bl b() O 0 0

0 n bnoi by by 0. 0

0 . buy by by

The system V.S has a non-trivial solution when det(S) = 0. QED.

Example.

| o

Resultant[x5—3x4+2x3—4x2+4, x> +2x3-x%-2, x]
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If two polynomials indeed have common roots, they can be found by a GCD computation

| PolynomialGCD[x°-3x*+2x*-4x%+4, x°+2x%-x%-2]

| —2+2x-%x%>+x°

m Computing resultants
Theorem 1.

resy(f, g = (=1)""resx(g, f)
Proof.

We need to count the number of exchanges in the Sylvester matrix. This is somewhat similar to the
bubble sort. Start with the top row and move to the bottom. It requires n + m — 1 swaps. We do this for
the first n rows. So, the total numberis n (n+m—1) = nm +n (n—1). Each swap introduces (— 1)
factor. QED.

Theorem 2.
If g(x) = c is a constant, then

resy(f, ¢) = "
Proof.

The Sylvester matrix is of size m x m and consists of all zeros except the main diagonal with ¢ on it
(in each row). QED.

Theorem 3.

If deg(g) = deg(f)
g=f*q+r, k= degr)
then

resi(f, g = LC(f)" Fres(f, r)

Proof. Since g = f x q + r we replace all by coefficients of g(x) with » = g — f ¢q. The determinant won't
change, because this operation corresponds to subtracting linear combinations of rows. Result of this

subtraction will lead to to (n — k) x(n — k) zeros in the left lower corner of the Sylvester matrix.
R =
S =
( 0 S )

Here R is a tringular matrix. As in the original Sylvester matrix S, the main diagonal of R consists of
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LC(/).
Thus,

det(S) = = LC(/)" ¥ det(S))

‘ R =
0 5
QED.

These three theorems immediately lead to the recursive algorithm for computing a resultant.

m Example.
Compute the resultant of the following polynomials
f=2x-3x*+2x —4x? +4;
g:x5 +2x3 —x*=3;

step 1. Divide g by 1

| PolynomialRemainder [x5 +2x3-%x2-3,2x°-3%x*+2x3-4%x*>+4, x]

3 x4
-5+ x?+x3+
2

Hence

5.4 3x* 3, .2
resy(f, g) = 2°7resy| f, r1 = 7+x +x° -5

Applying theorem 1
resi(f, g) = 2resy(f, r1) = 2 (= 1) resy(r1, ) = 2 resy(r1, f)
step 2. Divide f by r|

32x3 10x> 20x 94
= - + — — (modry)
9 9 3 9

Hence

32x*  10x2 20x 94
—_ + —_ —
9 9 3 9

3 5-3
resy(r1, f) = (5) resx(rl, =

and
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2

3)? 3
resy(f, g =2 (5) resy(ry, 1) =2 (5) resy(ro, 1)

step 3. Divide | by

693x> 423x 351

ry = + - mod 7
: 512 T 256 512 modr)
Hence
( ) (3 )4‘2 693 x> 423x 351
resx(ra, ri) = | — resyl rm, r3 = — + -
A 20 512 256 512
and
00 =2(5) () st =2 (3] (5] s o
resy(f, =2 =| [ —| resc(rz, r3) =2 = | —| res,(r3, r
& 2) g > 2) 9 12
step 4. Divide r; by 3
52224x 644608
ry = - (mod r3)
5929 53361
Hence
693\3-1 52224 x 644608
resy(r3, 12) = (— —) reSx(V3, r4 = - )
512 5929 53361
and

. 9 2(3)2(32)2( 693)2 ( )
resy(f, =2 [ = | === res«(r4,
€S g 5 9 512 CSx(74, '3

step 5. Divide 73 by 4
46275 845

=——— (mod
"= oat 632 M4
Hence
52224\2-0 46275845
resy(r4, 13) = ( ) resx(m, rs = — —)
5929 47941 632
and

o 2(3)2(32)2(693)2(52224)2 ( )
resy(f, =2= | —| | =——| | ———] resg(ra, r
& 2) Vo) (512) Uson9 w7

step 6. We terminate computation by applying theorem 2

46275 845) B ( 46275 845 )deg<r4>
47941632) \ 47941632

resx(m, -
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3)2 (2)2 (693)2 (52224)2( 46275 845

res«(f, =2|— -
(/. &) ( 9 512 5929 47941632

) = —7805
2
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