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I Introduction

Several yearsago, | was invited to contemplate being marooned
on the proverbial desert island. What book would | most wish to have there,
in addition to the Bible and the complete works of Shakespeare?
My immediate answer was Abramowitz and Stegun's
Handbook of Mathematical Functions.
If | could substitute for the Bible, | would choose Gradsteyn and Ryzhik' s
Table of Integrals, Series and Products.
Compounding the impiety, | would give up Shakespeare in favor of
Prudnikov, Brychkov and Marichev's Integrals and Series. - Michael Berry [1]

m Calculusintegration
Consider arational function
X" =15 -7x3+6Xx-7
X —6x*+13x°-12x2 +4x
and compute its integral with the Calculus (or Analysis) method. By factoring the denominator

Factor[x5 -6x*+13x3-12x%2%+ 4x]

| (-2 +x)2 (-1 +x)?x

Thus, the original function f can be rewritten as
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X' =15 -7x3+6x-7

X (X=12(x=2)7

Next we rewrite f as asum of terms with minimal denominators.

X' -15X°-7x3+6X%X-7

Apart
[ X (X-1)2 (x-2)2 ]
403 355 22 105 7
8 - + - - — +6Xx+x?
2 (-2+x)2 4 (-2+X) (-1+x)2 -1+x 4Xx

Thus

o giexasga 12 105 403 355
=8+6X+X+ —— —

- - +
4x (x—=12 x-1 2(x=22 4(x-2
This can be easily integrated term by term

Integrate[#, X] &/@%

403 22 5 x3
+ +8X +3 X5+ — +
2 (-2 +X) -1+X 3
355 7 Log[X]

— Log[-2+Xx] -105Log[-1+X] -

4

Another example
X3 (2x2-1)

fo—
XF—x2+1

Find poles of the denominator

‘ X /. Solve[x4 -x2+1=0, x]

| S R I e ) I C Ay
Thus, the original function f can be rewritten as

f x3(2x%-1)

Next,

- =021 (e V- o V-2 fem -9 e (- 2%9)
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Apart[(x® (2x2-1)) / ((x- (-1)*®) (x+ (1)) (x- (-1)°°) (x+ (-1)%°))]

(-1+2 (-1)23) /(2 (-1+ (-1)273) (1+ (-1)%3) <( 1)1/6 _ )) _

((_1>1/3 (1+2 (_1)2/3>>/(2 (_ (-1) /3) ( 1)2/3> ( )5/6 X)) .
22 (122 -0 (2 (24 0 {12 (D2) (CD40x))
((_1)1/3 (1+2 (_1)2/3))/ (2 (_ ( 1)2/3) < 1) /3> ( 5/6 X))

Finally, integrating termby term, we get

| Integrate[#, X] &/@%

X2 +
(—2+ (—1)1/3) ZNCTan[Z\/\/_j—_XSX] +iLog[—1+\/?X—x2} / <—6j+2\/?> 4
V3 ZiArcTan[M] +Log{71+\/?xfx2] / (—611+2\/?) .
—3+\/?X
(2- (1)) chTan[%] 71'1Log[1+\/?x+x2] / <76j1+2\/?) ,
\/?+3X
V3 721'1ArcTan{ ]+Log{1+\/3_x+x2] /(—61‘1+2\/3_>
3+\/?X
Compare with
3 (2x2-1)
Integrate[ @21’ x]
_;\/?ArcTan{_l\ﬁxz]+iLog[l—x2+x4}
3
The computer algebraanswer is much nicer!!
I Differential Algebra

Definition. An integral domain is a commutative ring without zero divisors (note, 0 is azero divisor
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in any ring)
A6axb=0=a=00rb=0

For example, inZs wehave2 = 3=0, so 2 and 3 are zero-divisors.
Examples of an integral domain

- thering Z

- the polynomial ring Z(x)

-thering Z,, if pisprime
Definition. A field is a commutative ring with identity in which every non-zero element has amultiplicativeinverse.
Theorem. Every field isan integral domain.
Proof. Inafield axb = 0. Multiply it by a~* to get b= 0.
Theorem. Every finiteintegral domainisa field.

Definition. A characteristic of ring (or field) isthe number of times the identity element can be
added to itself to get 0. In the case when this never can be produced, the ring or field is called to have
a characteristic zero.

Examples,
Q, R, C, characteristic 0.
Thefield Z,, has characteristic p.

Theorem. The characteristic of an integral domain is either O or a prime number.

Proof. Let n bethe smallest such that n+1 =0, wheren = k=m. It follows (k= 1) (m= 1) = 0. But in an integral domain
either of themis zero, so k=1 =0 or m«1 = 0. Contradiction, since n isthe smallest.Thus, nis prime.

Definition. Let R be an integral domain and D : R —» R such that

D(f +9) = D(f) + D(9)

D(f«xg) = D(f)«g + f «D(Q)
then D is called a differential operator. And the pair (R, D) isadifferentail algebra.
If Risafield, we get adifferentail field.
Definition. If fandg € Rand D(f) = g, thenwe say that f isanintegral of g and wewrite f = fg.
The problem of indefnite integration is to compute the inverse D~ of the differential opeartor.
Theorem. Inadifferentia field (F, D)

1.D0O) =D1) =0

£\ _ D(Hxg-f«D(Q)
2 D(E) - g?
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3.D(f") = nf"1D(f)

Proof.
D(1) = D(1*1) = D(1)*1+ 1*D(1) =2D(1) — D(1)=0
D(1) = D(1+0) =D(1) + D(0) — D(0) =0

it follows 1).

To prove 2) consider
f
D(—) =D(f)xg '+ f«D(g™?)
g

We find D(g™?) from
0=D() = D(g=g™t) = D(@= g+ g=D(g™?)

thus
D(g™)=-D(g) g~
Therefore,
D(i): D(f)xgt+ f«D(g™) = 9-D(1)- T-D@
g g
QEDm

Isthe differential field closed under the inverse operator?

L emma. For the rational function i € Q(x) there does not exists arational functionr € Q(x) such that
_1

D(r) = =

Proof. Supposethat r = 5 e Q(x), D(r)= i where GCD(p, q) = 1. Then

P\ D(p)=q-p=D()

1
—=D(r) = D(—) =
X q 0

It follows that

X% D(p) = xx p* D(q) = ¢
This means that x divides ¢? and therefore g.
Hence, we canwriteq = X"+ w, wheren> 1and GCD(w, x) = 1.
Substituting q = X"+ w into the previous equation, we obtain

XML W D(p) — X px DX % W) = g7 = X" W2
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or
XLy W D(P) — N XM s prw— XL psx D(W) = X" WP
Canceling by x"
X5 W D(P) —Ns PseW— X P DW) = X" % W2
and then collecting terms
Nx W= Xx [WxD(p)— X px DW) — X"+ w?]

we deduce that x divides p = w and because GCD(w, X) = 1, we must have that x divides p. Contra-
diction, x cannot dividesboth pand q. m

This lemma motivates for adomain extension.
Let F beafield and G isadifferential extension over F.

Definition. u € Giscalled logarithmic over F if there exists such p € F that D(u) = D(p)/ p ahd we
write u = log(p).

Definition. u € Giscalled algebraic over F if there exists apolynomial p € F such that p (u) = 0.

For the differential field of rational functions, the indefniite integral can always be expressed in an
extension field requiring only two types of extensions: logarithmic and algebraic number extensions.

Eamples.
1 _ =1
f(x+1)2 dx = 1 € Q(x)

[%dx = logx e Q(x, logx)

fﬁ dx = logx — 7 log(x? + 1) € Q(x, logx, log(x? + 1))

1 log(x—V2 )-log(x+V 2 )
fx2—2 dx = s

Definition. u € Giscalled exponential over F if thereexists such p € F that D(u)/u = D(p) and we
write u = exp(p).

S Q(\/E) (%, logx)

Definition. G is called elementary extension over F if it islogarithmic and/or algebraic and/or
exponential.

Examples.
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1
‘ f[logz(x) + ]clx
x log(x)

| 2x -2xLog[x] +xLog[x]?+Log[Log[x]]

1
f dx
e +1

|x-Log[1+eX]

f x+\jx+1 d X

1

—Ax+VI+x (-3+8x+2/1+x )+

12
5
5 Lo 1+2vV1+x +2x +V1+x }

Thisintegral cannot be done in elementary functions:

| Integrate[ExXp[-X"2], X]

1
EﬁErf [X]

Squarefree Factorization
Definition. We say that f is squarefreeif it has no proper quadratic divisors.
Definition.The squarefree factorization of f(x) is
n
00 = [ [ok* = 9100 82002 Ga(x° .. g (9"
k=1

where each g; is a squarefree polynomial and GCD(g;, gk) = 1
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The squarefree part of a polynomial can be calculated without actually factoring the polynomial into
irreducibles. We will see how to do thisfor fields of characteristic zero.

Definition. A field F is of characteristic zero, if forallae F,a+0andneZ,n+ 0 wehavena + 0.
Lemma. Let F be afield of characteristic zero. Then f issquare-free < GCD(f, ') = L

Example. Consider

f=x0+2x3+1

over Zs.

D(f) =6x°+6x%=0(mod3)

m Squarefree factorization algorithm
Thisis Musser's algorithm originall presented in

D. R. Musser, Algorithms for Polynomial Factorization, Ph.D. thesis, University of Wisconsin, 1971.
Take

00 = | |okok

k=1

find derivative

00 = D 0109 . KGO0 909 ... galX)

k=1

Hence

c(x) = GCD(f (x), f'(x) = l_lgk(x)k—l

k=2
Then

f(X) n
~ GCD(f(x), /(%) [JEX

k=1

W(X)
isaproduct of squarefree factors. Calculating (if c(x) is not 1, because otherwise f (x) is squarefree)
n
y(x) = GCD(C(), W) = [ g

k=2
and observing that
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W(X)
X)= ——
P Yo

or

10
c(X)

GCD(C(X), M)

c(X)

01(X) =

we find the first squarefree factor.

To find go(X), we observethat it is the first factor of c(x). Thus

f(X) «—c(X)
: k2 _ X
new_c (x) = GCD(EX), ¢(0) = [ Ja0*? = ==
ko3 y(x)
c(X) c(X) C(X)
W(X) = = = = Y(X)
GCD(c(x), ¢(X)) new_c(X) %
Y(X
In short
c(X)
c(X)= —
y(X)
W(X) = ¥(X)
y(X) = GCD(c(X), W(X))
W(X)
X)=——
AR

Applying these recursively, we find all gy
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