Introduction to Experimental Mathematics

Victor Adamchik Carnegie Mellon University

Online Mathematical Tools

"One of the greatest ironies of the information technology revolution is that while the computer was conceived and born in the field of pure mathematics <>, until recently this marvelous technology had only a minor impact within the field that gave it birth"

Jon Borwein [1]

21 Century Program [J. Borwein]

Question \rightarrow Computer Algebra System \rightarrow Online Math. Tools \rightarrow Search Engine \rightarrow Digital Libraries \rightarrow Answer

Encyclopedia of Integer Sequences

http://oeis.org/

■ Finite Sum

Find a closed form

$$\sum_{k=0}^{n} \binom{n}{k}^{2}$$

We compute a few first numbers

Table
$$\left[\sum_{k=0}^{n} \text{Binomial}[n, k]^{2}, \{n, 1, 7\}\right]$$

and then search

http://oeis.org/

to make the following conjecture

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$

■ Finite Sum

Find a closed form $(n \ge 2)$

$$\sum_{k=0}^{n} (18 \, k^2 - 9 \, k \, n + 3 \, k - 8 \, n - 12) \binom{n+4}{3 \, k - n}$$

Compute a few first numbers

Table
$$\left[\sum_{k=0}^{n} (18 \, k^2 - 9 \, k \, n + 3 \, k - 8 \, n - 12) \text{Binomial} [n + 4, 3 \, k - n], \{n, 2, 7\}\right]$$

{60, -84, 112, -144, 180, -220}

take the absolute value

Abs[%]
{60, 84, 112, 144, 180, 220}

and then search the table of sequences

```
Table[4 Binomial[n, 2], {n, 2, 11}]
{4, 12, 24, 40, 60, 84, 112, 144, 180, 220}
```

We conjecture

$$\sum_{k=0}^{n} \left(18 \, k^2 - 9 \, k \, n + 3 \, k - 8 \, n - 12\right) \left(\frac{n+4}{3 \, k - n}\right) = (-1)^n \, 4 \left(\frac{n+4}{2}\right)$$

■ Recurrence Equation

Find a closed form for a_n :

$$a_{n+1} = \frac{a_n + 2}{2 a_n + 3}$$

 $a_0 = 1$

We compute a few first numbers

a[0] = 1; $a[n_{1}] := a[n] = \frac{a[n-1] + 2}{2 * a[n-1] + 3}$ Table[a[n], {n, 0, 6}] $\left\{1, \frac{3}{5}, \frac{13}{21}, \frac{55}{89}, \frac{233}{377}, \frac{987}{1597}, \frac{4181}{6765}\right\}$

and then search

http://oeis.org/

for the numerators 1, 3, 13, 55, 233 and the denominators 1, 5, 21, 89, 377 separately. Both searches return the Fibonacci numbers. Therefore, a closed form is given by

$$a_n = \frac{F_{3\,n+1}}{F_{3\,n+2}}$$

Once, the form is guessed, it is easy to prove it.

■ A curious anomaly

Consider a series for π (the Gregory series)

$$\pi = 4 \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2 k - 1}$$

A series truncated to 5 million digits

3.141592**4**5358979323846**4**643383279502**7**841971693993**873**0582097494**182**230781640

Here are actual digits of π

3.141592**6**5358979323846**2**643383279502**8**841971693993**751**0582097494**459**230781640

This behavior was first observed by J. R. North in 1988

Consider differences:

{6 - 4, 4 - 2, 8 - 7, 873 - 751, 459 - 182} {2, 2, 1, 122, 277}

We slightly modified the sequence

{6 - 4, 4 - 2, 88 - 78, 873 - 751, 4592 - 1822}

Divide this by 2 and enter "1, 1, 5, 61, 1385" into the Online Encyclopedia of Integer Sequences. We find that this is a sequence for the Euler numbers

```
Table[EulerE[2k], {k, 0, 5}]
{1, -1, 5, -61, 1385, -50521}
```

that are defined by

$$\sec(x) = \sum_{k=0}^{\infty} \frac{(-1)^k E_{2k}}{(2k)!} x^{2k}$$

What did we discover?? An asymptotic expansion

$$\pi - 4 \sum_{k=1}^{n/2} \frac{(-1)^{k-1}}{2k-1} \approx \sum_{k=0}^{\infty} \frac{E_{2k}}{4^k n^{2k+1}}$$

The Inverse Symbolic Calculator

What is Inverse Symbolic Computation? In short, "reverse engineering" of real numbers. Given a number or sequence of numbers find where they come from.

https://isc.carma.newcastle.edu.au/

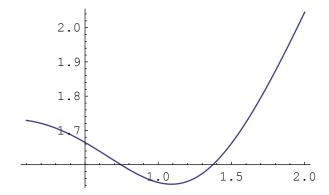
http://oldweb.cecm.sfu.ca/projects/ISC/ISCmain.html

Problem from the previous lecture

Use Gröbner bases to find the minimal distance between the roots of

$$z^3 + c^2 z + 1 = 0$$

for real c > 0. Here is a graphic of the numerical calculated minimum



```
We find c numerically
```

```
minDistance[c_] :=
Module[{roots, p, dist},
roots = x /. NSolve[x^3 + c^2 x + 1 == 0, x, WorkingPrecision → 50];
p = Partition[roots, 2, 1, 1];
dist = Abs[#[[1]] - #[[2]] & /@ p];
Min[dist]
]
FindMinimum[minDistance[c], {c, 1}, WorkingPrecision → 40]
{1.543081844217052283611875212073110387083,
{c → 1.091123635971721403554616991249479878576}}
```

Let us search the Inverse Symbolic Calculator at

http://oldweb.cecm.sfu.ca/projects/ISC/ISCmain.html

Feeding in 1.09112363 yields

$$\frac{\sqrt{3}}{2^{2/3}}$$

■ Integral Equation

■ Trigonometry

What is the algebraic value of

$$-\sqrt[3]{\cos(\frac{2}{7}\pi)} + \sqrt[3]{-\cos(\frac{4}{7}\pi)} + \sqrt[3]{-\cos(\frac{6}{7}\pi)}$$

Compute this numerically

$$N\left[-\sqrt[3]{\cos\left(\frac{2}{7}\pi\right)} + \sqrt[3]{-\cos\left(\frac{4}{7}\pi\right)} + \sqrt[3]{-\cos\left(\frac{6}{7}\pi\right)}, 75\right]$$

0.717515079649939935120950559177986112108457601155250572183302830027981 465015

Cube it and then use "Integer Relation Algorithms" option

```
0.717515079649939935<sup>3</sup>
0.36939677415858365
```

You will get back the following information

K satisfies the following polynomial:

 $-32 + 75x + 30x^{2} + 4x^{3}$

In[22]:= a = 0.36939677415858365;

B := { {1, 0, 0, 0, c }, {0, 1, 0, 0, c a}, {0, 0, 1, 0, c a²}, {0, 0, 0, 1, c a³} ; c = 10^15; Round[N[B, 30]]; LatticeReduce[%][[1]]; N[%]

{-32., 75., 30., 4., 36.}

Out[27]=

Solve
$$\left[-32 + 75 \times + 30 \times^{2} + 4 \times^{3} = 0, \times\right]$$

 $\left\{ \left\{ x \rightarrow -\frac{5}{2} + \frac{3 \times 7^{1/3}}{2} \right\}, \left\{ x \rightarrow -\frac{5}{2} - \frac{3}{4} 7^{1/3} \left(1 - i \sqrt{3}\right) \right\}, \left\{ x \rightarrow -\frac{5}{2} - \frac{3}{4} 7^{1/3} \left(1 + i \sqrt{3}\right) \right\} \right\}$

It follows that

$$-\sqrt[3]{\cos(\frac{2}{7}\pi)} + \sqrt[3]{-\cos(\frac{4}{7}\pi)} + \sqrt[3]{-\cos(\frac{6}{7}\pi)} = \sqrt[3]{-\frac{5}{2} + \frac{3\sqrt[3]{7}}{2}}$$

■ Simple Integral

■ Definite Integral

Consider the integral

$$\int_0^{\frac{\pi}{4}} \frac{t^2}{\sin^2 t} dt$$

and ask what is its analytic value? We compute this to hundred digits

```
NIntegrate [t^2 / Sin[t]^2, \{t, 0, Pi / 4\}, WorkingPrecision \rightarrow 30]
```

```
0.843511841685034634002620052000
```

and then send it to the Inverse Symbolic Calculator (choose Integer Relation Algorithm as an option). We get back

K satisfies the following Z-linear combination :

- 16 K - Pi**2 + 16 Catalan + 4 Pi*log(2)

Thus we conjecture

$$\int_0^{\frac{\pi}{4}} \frac{t^2}{\sin^2 t} dt = \frac{\pi \log 2}{4} - \frac{\pi^2}{16} + C$$

where C is Catalan's contant in Mathematica.

```
ln[48]:= v = 0.843511841685034634002620051999; B := \{\{1, 0, 0, 0, cv\}, \\ \{0, 1, 0, 0, cPi^2\}, \\ \{0, 0, 1, 0, cCatalan\}, \\ \{0, 0, 0, 1, cPiLog[2]\}\}; \\ c = 10^{15}; \\ Round[N[B, 30]]; \\ LatticeReduce[\%][[1]]; \\ N[\%] \\ ln[53]:= \{-16., -1., 16., 4., -7.\} \\ ln[53]:= -16v - Pi^2 + 16Catalan + 4PiLog[2] \\ 0. \times 10^{-29} \\ ln[53]:= 0. \times 10^{-29} \\ ln[
```

Falsy Patterns

Numeric Fraud

Consider the following series

$$\sum_{k=0}^{\infty} \frac{\lfloor k \tanh(\pi) \rfloor}{10^k}$$

and let us compute it numerically.

NSum[
$$\frac{Floor[k * Tanh[Pi]]}{10^{k}}$$
, {k, 0, Infinity}]
0.0123457

This suggests

$$\sum_{k=0}^{\infty} \frac{\lfloor k \tanh(\pi) \rfloor}{10^k} = \frac{1}{81}$$

Let us recompute the series with higher precision

100 digits

$$\frac{1}{81} - Sum \left[N \left[\frac{Floor[k * Tanh[Pi]]}{10^{k}}, 100 \right], \{k, 0, 2000\} \right]$$
$$0. \times 10^{-102}$$

300 digits

As you see the sum is $\frac{1}{81}$ up to 268 digits!!

■ Symbolic Fraud

Consider the following class of integral

$$\int_0^\infty \prod_{k=1}^n \operatorname{sinc}\left(\frac{x}{2\,k-1}\right) dx$$

sinc (x) =
$$\frac{\sin x}{x}$$

What is its closed form? Here are few particular cases

We are ready to make a conjecture!!

$$\int_0^\infty \prod_{k=1}^n \operatorname{sinc}\left(\frac{x}{2\,k-1}\right) dx = \frac{\pi}{2}$$

Unfortunately,

$$Integrate \left[Sinc[x] Sinc[\frac{x}{3}] Sinc[\frac{x}{5}] Sinc[\frac{x}{7}] Sinc[\frac{x}{9}] Sinc[\frac{x}{11}] \right]$$
$$Sinc[\frac{x}{13}] Sinc[\frac{x}{15}], \{x, 0, Infinity\} \right]$$
$$\frac{467\,807\,924\,713\,440\,738\,696\,537\,864\,469\,\pi}{935\,615\,849\,440\,640\,907\,310\,521\,750\,000}$$

N[%/Pi, 20]

0.49999999999264685932

References

[1] J. Borwein and D, Bailey, *Mathematics by Experiment: Plausible Reasoning in the 21st Century*, AK Peters Ltd, 2003.