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                      Application to Trigonometry
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and expand the rhs and then separate the real and imaginary parts.
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8re, im< = 81 + Re@%D, Im@%D<;

8im, re< = 8im, re< ê. :CosB π

7
F → c, SinB π

7
F → s>

97 c6 s − 35 c4 s3 + 21 c2 s5 − s7, 1 + c7 − 21 c5 s2 + 35 c3 s4 − 7 c s6=

GroebnerBasisA9im, re, c2 + s2 − 1=, 8<, 8s<E

91 − 3 c − 8 c2 + 4 c3 + 8 c4=
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Factor@%@@1DDD

H1 + cL I1 − 4 c − 4 c2 + 8 c3M

SolveA1 − 4 c − 4 c2 + 8 c3 � 0, cE

We proved
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How do you find an algebaraic form for sinI p

7
M?

                      Hunting the pentagon                        

or 

areas of cyclic polygons

A polygon inscribed in a circle is called a cyclic polygon.

Main problem: how to express the area of a cyclic polygon in terms of sides?

For polygons of more than three sides, the length of its sides do not determine a polygon and its area. 
That is why we impose a condition that a polygon is inscribed in a circle.

A =
1

2

x1, x2

y1, y2
+

1

2

x2, x3

y2, y3
+ ... +

1

2

xn, x1

yn, y1

Each side of the polygon is computed by

Hxk - xk+1L2 + Hyk - yk+1L2 = sk
2, k = 1, 2, ..., n

xn+1 = x1,

yn+1 = y1

Also we count distances from the origin Irx, ryM to each vertex

Hxk - rxL2 + Iyk - ryM2 = R2, k = 1, 2, ..., n

Altogether, there are 2 n + 1 equation and 2 n + 4 unknown variables. Without loss of generality,  we 
assume that x1 = x2 = y1 = 0 then we obtain the system of 2 n + 1 algebraically independent equations 

with 2 n + 1 unknowns.
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à Heron's formula (first century BC)

P1 P2

P3

R

p1 = 80, 0<; p2 = 8x2, 0<; p3 = 8x3, y3<; Cr = 8rx, ry<;

GroebnerBasisB:

A −
1

2
Det@8p1, p2<D −

1

2
Det@8p2, p3<D −

1

2
Det@8p3, p1<D,

s12 − Hp2 − p1L.Hp2 − p1L,

s22 − Hp3 − p2L.Hp3 − p2L,

s32 − Hp3 − p1L.Hp3 − p1L,

R2 − HCr − p1L.HCr − p1L,

R2 − HCr − p2L.HCr − p2L,

R2 − HCr − p3L.HCr − p3L
>, 8R, s1, s2, s3<, 8rx, ry, x2, x3, y3<F

The first equation is known as Heron's fomula. that is usually written as

A = p Hp - s1L Hp - s2L Hp - s3L
p is a half-perimeter.

The second equation unites the area with the radius

4 A R = s1 s2 s3
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à Brahmagupta's formula (seventh century)

P1 P2

P3

P4

R

Cr

p1 = 80, 0<; p2 = 8x2, 0<; p3 = 8x3, y3<; p4 = 8x4, y4<; Cr = 8rx, ry<;

gb = GroebnerBasisB:

A −
1

2
Det@8p1, p2<D −

1

2
Det@8p2, p3<D −

1

2
Det@8p3, p4<D −

1

2
Det@8p4, p1<D,

s1^2 − Hp2 − p1L.Hp2 − p1L,

s2^2 − Hp3 − p2L.Hp3 − p2L,

s3^2 − Hp4 − p3L.Hp4 − p3L,

s4^2 − Hp4 − p1L.Hp4 − p1L,

R2 − HCr − p1L.HCr − p1L,

R2 − HCr − p2L.HCr − p2L,

R2 − HCr − p3L.HCr − p3L,

R2 − HCr − p4L.HCr − p4L
>, 8<,

8x2, x3, y3, x4, y4, rx, ry, R<,

MonomialOrder → EliminationOrderF

We derived the Brahmagupta formula: which is usually written in the following symmetric form

16 A2 = H-s1 + s2 + s3 + s4L Hs1 - s2 + s3 + s4L Hs1 + s2 - s3 + s4L Hs1 + s2 + s3 - s4L
In similar way we obtain a relation between area and radius:

H4 A RL2 = Hs2 s3 + s1 s4L Hs1 s3 + s2 s4L Hs1 s2 + s3 s4L
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à Robbins' formula (1995)

It may be surprising that so long time has elapsed... We will see that calculation leading to Robbons's 
formula have signficant computational abstacles.

P1 P2

P3P5

P4

R

Cr

p1 = 80, 0<; p2 = 8x2, 0<; p3 = 8x3, y3<; p4 = 8x4, y4<; p5 = 8x5, y5<;

Cr = 8rx, ry<;

gb = GroebnerBasisB:

A −
1

2
Det@8p1, p2<D −

1

2
Det@8p2, p3<D −

1

2
Det@8p3, p4<D −

1

2
Det@8p4, p5<D −

1

2
Det@8p5, p1<D,

s1^2 − Hp2 − p1L.Hp2 − p1L,

s2^2 − Hp3 − p2L.Hp3 − p2L,

s3^2 − Hp4 − p3L.Hp4 − p3L,

s4^2 − Hp4 − p5L.Hp4 − p5L,

s5^2 − Hp5 − p1L.Hp5 − p1L,

R2 − HCr − p1L.HCr − p1L,

R2 − HCr − p2L.HCr − p2L,

R2 − HCr − p3L.HCr − p3L,

R2 − HCr − p4L.HCr − p4L,

R2 − HCr − p5L.HCr − p5L
>, 8<,

8x2, x3, y3, x4, y4, x5, y5, rx, ry, R<,

MonomialOrder → EliminationOrderF;

This approach leads to a single polynomial equation for the area in terms of sides. The order of equa-
tion is 28 and it takes about 10Mb of space.
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à Robbins's work

The Wall Street Journal (2003): 

If you had just a short time to live, what would you do with it? David Robbins, a mathemati-
cian at the Center for Communications Research, Princeton, was solving a really tough geome-
try problem.

available at http://www.plambeck.org/oldhtml/mathematics/robbins.htm

In his work, Robbins computed cases n = 5 and n = 6.

D. P. Robbins, Areas of polygons inscribed in a circle, Discrete Comput. Geom., 12(1994), 
223-236.

D. P. Robbins, Areas of polygons inscribed in a circle, Amer. Math. Monthly, 102(1995), 
523-530.

Robbins was not able to solve the system above directly. Instead, he gained some insights by running 
a numerical experiment and then guessed  the formula. He used Mathematica.

The order of a polynomial for the area has as many real roots as the number of different areas of self-
intersecting polygons. He chose numbers 29,30,31,32,33 and draw all cyclic pentagons of these 
lengths. Then he constructed a polynomial with these seven roots. The next his guess was on exact 
forms of coefficients - they must be terms of symmetric functions. At the end he had a system of 70 
linear equations that was easy to solve.

Robbins conjected the general form of the relation between an area and sides for any n. 

Robbins' conjecture on the order of a minimal polynomial

AH2 k + 1L =
1

2
H2 k + 1L 2 k

k
- 22 k-1

AH2 k + 2L = H2 k + 1L 2 k

k
- 22 k-1

The conjecture was recently proved

M. Fedorchuk and I. Pak, Rigidity and polynomial invariants of convex polytopes, Duke 

Math. J. (2005); available at 

http://www-math.mit.edu/~pak/research.html

15-355: Modern Computer Algebra 7



à The Gauss pentagon formula (1823)

Seems nobody was aware of this result until Prof. Wu revived this formula in his book on Mathemat-

ics Mechanization, p.327. The formula says that to compute the area we need to go around the pen-
tagon and measure areas of its vertex triangles (that which formed by three conseciutive vertices).

P1 P2

P3P5

P4

Given a cyclic pentagon. If b0, b1, b2, b3, b4 are areas of the vertex triangles then the pentagon  area 

is given by

A2 - AHb0 + b1 + b2 + b3 + b4L + b0 b1 + b1 b2 + b2 b3 + b3 b4 + b4 b0
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