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I Buchberger's algorithm

Theorem. (Buchberger's S-pair criterion)
Afiniteset G = {g;, ..., gs} for anideal | isa Grobner basisif and only if

S(G, Gn) —c 0

(the remainder of divison S(gx, gn) by G iszero) for any k and n.

Buchberger's algorithm

Fix amonomial order.

A Grébner basisG foridea | = < f;, ..., fg> isobtained by the following procedure:
1. for eachi and j execute (fi, fj) — rij
2. 1f all remainders are zero, return fy, ..., fs
3. otherwise add r; ; to basis G and goto step 1

This procedure gives us an ascending chain of ideals that must eventually stop growing because
F[X1, ..., Xa] isNoetherian. This provesthat algorithm terminates.

Unfortunately, there is no bound on the running time.
Input: A polynomia set F = {f;, ..., fs} that generatesan ideal |
Output: A Grobner basisG = {gi1, ..., O} that generatesl| .
G =F
M :=setof pairs{f;, fj}wheref; and f; arein G.
WHILE (M<>@) DO
{p,q} :=aparinM



Groebner Bases

M:=M -{{p, a}}
S:= SPolynomia(p, q)
R := NormalForm(S, G)//reduce Swrt to G
IF(R<>0) THEN
M = MU {f;, Rifordl g inG
G =GU{R

m Examplel
Consider theideal < x?—y, x3 — z> and build a Grébner basiswrt to lex order x > y > z.

We start with computing
-y, -2 = g*(xz—y) - g (32 =2 =-Xy+ 2
Itsleading term x y isnot contained in < LM(f;), LM(f,) > = < x2 >, therefore we must add it
to the basis, whichisnow is
<X-y, XX -2z —-Xy+2z>
Now we compute
2

SXP-y, —-xy+2 = %’*(xz—y) — %*(—xy+ 2 =xz-Yy

We add it to the basis, which now is
<X-y, XX -2z —Xy+2zXxz2-y>
Keep computing
Sfy, f3) =z« f
Sfy, fa) =y=fs
Sfz, fa) = xXy+2 = f3
S(fy, fa) = y3-7

Thelast hasleading term that isnot in < x?, Xy, xz>.Adding the new generator completes the
Grobner basis

<X-y, X -2z -XYy+12z Xz-V, ¥-Z2>
Y ou check this by computing S-polynomials.
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GroebnerBasis[{x* -y, x® -z}, {x, vy, z},
Mononi al Order - Lexi cogr aphi c]

{y>-2z% -y?+xz, xy-z, x*-y}

m Example2

Compute a Grobner basisfor theideal < xy®—x?, x3y? — y> wrt to graded lex order x > y.
x3 y3 x3y3
Sy Y2 ) = EE )~ BE Y y) = ey

Itsleading term x* is not contained in < LM(f;), LM(f,) >, therefore we must add it to the basis,
whichisnow is
<XYP-X%, Xy’ —y, =Xy >

Now we compute

2

Sy -y, Xt +y?) = X4y « (3 y? - y)—xf—)f*(—x4+y2):y“—xy

It'sleading term y#is not contained in < LM(fy), LM(fy), LM(f3) >, therefore we must add it to
the basis.

Sxy*-x2, =x*+y?) = X:—;;*(xy:’—xz) _Xf (X +y?) = =X +yP
—X° 4+ yP = iy :y5—xy2—>y4_xy: 0
The basisnow is

<Xy =%, Xy —y, - X+ V%, V¥V —xy >

Next we compute
XY=, ¥ -xy) = 25 (xyx) = L (y - xy) =0

) -
S-x*+¥y% Y -xy) = = (—x“+y2)—x47¥4 (Y =xy)=-y+x3y

Yy s =Xy -Xy 5 42 =0

|>s>
>3><,>



Groebner Bases

GroebnerBasi s [{xy®-x? x®y*-y}, {x, y},
Mononi al Order - Degreelexi cogr aphi c]

[xy-y* -x®+xy3, -x*+y? -y+x3y?}

m Timings

Cear[x, y, z]; polys = {x®+y*+2%-1, x> +y®+2%-1}

gb = Ti m ng[G oebner Basi s[pol ys, {y, z, x}11;
{First [gb], Length[gb[2]]}

(0. 063, 7)

gb = Ti m ng[G oebner Basi s[polys, {z, vy, x}11;
{First [gb], Length[gb[[2]]1]}

{1.383357x10'7, 5}

gb = Ti m ng[G oebner Basi s[polys, {X, vy, z}11;
{First [gb], Length[gb[[2]]1]}

(1.422, 11)

gb = Ti m ng[G oebner Basi s [pol ys, {y, z, X},
Mononi al Or der - Degr eeLexi cographi c]];
{First [gh], Length[gb[[2]]]}

{1.661x10°°, 2}
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gb = Ti m ng[G oebner Basi s[pol ys, {X, vy, z},
Mononi al Or der -» Degr eeRever seLexi cographic]];
{First [gh], Length[gb[[2]]]}

0., 3}

m Monomial orders

GroebnerBasi S[{X +Yy + 2, X -2y +2z"3, x"2 -2y"3 + 2},
X, y, z}]

Reverting the order of the variables gives now one univariate polynomial in x.

GroebnerBasi S[{X +Yy + 2, X -2y +2z"3, x"2 -2y"3 + 2},
{z, y, Xx}]

Calculating a Grobner basisis typically avery time consuming process for larger polynomial sys
tems. In most cases the calculation using the term order MonomialOrder -> DegreeRe-
verselexicographic isthe fastest.

GroebnerBasi S[{X*"7 + y"5 + z"2, X -2y"3 +52z"3,
X2 - 7Ty"3 + z"4}, {z, y, X},
Monom al Order -> Lexi cographic]; // Ti mng

GroebnerBasi S[{X*"7 + y"5 + z"2, X -2y"3 + 52z"3,
X"N2 - 7Ty"3 + zM4}, {z, y, X},
Monom al Or der -> Degr eeReverselLexi cographic]; // Ti m ng

The DegreeReversel_exicographicis not directly useful for equation solving. But it is very useful
for detecting an inconsistent system of equations.

For eliminating variables the term order MonomialOrder -> EliminationOrder is often the
most appropriate one.

GroebnerBasi S[{X -st”"2 +5s, ¥y -s"2 +t"2, zZ -s"3 +1},

{z, ¥y, X}, {s, t},
Monom al Order -> Elim nationGOrder ]



6 Groebner Bases

m Coefficients Growth
nt4l:= | egs={2x y+x* V¥ -xZ+1, X+ Y2 -1, x*y-7y 2+ y’ 7);

In[5]:=
"ol |gb=GroebnerBasis[eqs, X, Yy, z}1;

In[6]:=
| Exponent [#, {X, Yy, z}] & /e gb

out[6]= | ({0, 0, 44}, {0, 1, 43}, {1, 0, 43}}

In[7]:=
ntr] | Max [Abs [Cases [gb, _Integer, 311]

Out[7]=
i 660 315050284 902405127 753569 085965903 934 655262562 978 197 853379515 -

017909418018128358017411114728904394324209494316198 167 365922 -
715648 404225906 493 353 093640012381 786 701916 234271 606 424 340 544 -
687009397 545950038 307 082551077348818498311022761249117 137174 -
194 545028

m Minimal Grobner basis

Buchberger's algorithm does not guarantee that obtained basis will be unique. There are two places
in the algorithm where we make choices:

a) the order of polynomialsin the basis

b) in the while loop: {p, g} :=apairin M - we choose two polynomials at random.
Definition. A Grobner basisis called minimal if all LC(gx) = 1 and for all i # j LM (g;) does not
divide LM(g;).

How to obtain aminimal basis? We must eliminate all g; for which there exists
j # i suchthat LM(g;) divides LM(g;). The minimal basisis not unique as well.

Example. Consider abasis (lex order y > X).

<Y HYX+ X, Y+ X Y, X, x>
which isnot minimal.
We can remove the first, second and fourth polynomialstoget <y, x>
We could also remove thefirst, third and fourthtoget < y + X, x>

Definition. A Grobner basisis called reduced if all LC(gx) = 1 and each g; is reduced with respect
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to G- {gi}
Lemma. Let G = {g;, ..., Qs} beaminimal Grobner basis. Consider the following reduction process
01 —n, 1, whereH; = {g2, ..., g¢}
J2 —H, h2, whereHz = {hy, g3, ..., O}
03 —H, N3, whereHz = {hy, hy, ga, ..., Os}
and so on

gS —)Hs h31 WhereHS = {hll h21 ey hS—l}
ThenH = {hy, hy, ..., hs} isareduced Grobner basis

Theorem (Buchberger) Fix a monomial order. Then every non-zero ideal has a unique reduced
Grobner basis

Example.Consider abasis < y?+yX + X%, Y + X, Yy, X2, x> We constructed two minimal bases
<y, x> and < y+ X, Xx>. Thelast oneis not reduced, we can reduce y + X to y using X.

Buchberger's Refined Algorithm

Here we will discuss some improvements on the Buchberger algorithm. The most expensive opera-
tion in the algorithm is the reduction of the S-polynomials modulo G. Buchberger developed two
criteriasfor detecting O-reductions a priori. He also developed other strategies that significantly
speed up the calculations.

Buchberger'sFirst Criteria.
If
LCM(LM(p), LM(@)) = LM(p) = LM(q)
then
S(p, @ —6 0

This means that we can ignore those pairs whose leading monomials are relatively prime.
Buchberger's Second Criteria.
If, when considering the pair { f;, f;}, there exist an element f such that

LCM(LM(f;), LM(f})) isamultiple of LM(fy)

and ¥f;, f) and §f;, fx) have already been computed



Groebner Bases

then
i, fj) —c 0
Another strategy.

Always select pairs{ fi, fj} suchthat LCM(LM(f)), LM(f;))isassmall aspossible.

m Example Buchberger's Refined Algorithm

Consider theideal < x?+2Xxy, Xy + 2y?—1> and compute its Grébner basiswrt to lex order

X> Y.
K2y Xy _
SxP+2xy, Xy +2y*-1) = = (X2 +2XY) - x—y*(xy+ 2y*-1) =x
Adjust the basis:
<XP4+2XY, Xy + 2y’ -1, x>
Look at LCMs:

LCM(LM(fy), LM(f3)) = LCM(xX?, X) = X°
LCM(LM(fy), LM(f3)) = LCM(xy, X) = Xy
and choose { f, f3}.
S(f,, f3) = %*(xy+ 2y2-1) - T x(x) =2y -1
Adjust the basis:
<X4+2XY, Xy + 2y -1, X, 2y°—1>
Look at LCMs:
LCM(LM(fy), LM(f3)) = LCM(X?, X) = X°
LCM(LM(fy), LM(f9) = LCM(%?, y?) = X* y?
LCM(LM(f2), LM(f9) = LCM(xy, ¥*) = xy?
LCM(LM(f), LM(f9) = LCM(x, ¥?) = xy?
We can choose { f,, fs} or {fs, f4}-thelowestin x.

We skip the last one, since the first criteria

2 2
S(fy, fg) = Xx—yy*(xy+ 2y*-1) - ;—;2 #(2y?P-1) =3 +2y3-y
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X2 Yy =2y3—y oy =0
Two pairsleft {f;, f3}and{f;, fs} - thelowestin x. We skip {f;, fs4}, Sincethefirst criteria
S(fy, f3) = é*(x2+2xy) - X; %(X) =2XY
2Xy -4 =0
Therefore, hereisthe basis
<X°4+2XY, Xy + 2y -1, X, 2y*—1>

We can cancdl first two polynomials, since they are reduced wrt f3. Hence

1
< X y2—5>

Hilbert's Nullstellensatz
If theideal is (1) then the polynomials have no common zeros.

Grébner bases are very useful for solving systems of polynomial equations. Let F be afinite set of
polynomiasin K(x, ..., X,). Thevariety of F isaset of all common complex zeros:

VF)={(z1, ... z) | fk(z1, ..., zo) = Ofordl f, € F}

The variety does not change if we replace F by another set of polynomialsthat generatesthe same
ideal, in particular, by the reduced Grobner basis. The advantage of G isthat it reveals geometric
properties of the variety that are not visible from F. What is the size of the variety? Hilbert’ s Null-
stellensatz implies

Thevariety V(F) isempty if and only if G = (1)
Example.

X+y?=0

-X+y+1=0

y'-y=0
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GroebnerBasis[{x +y? =0, -x+y +1 =0, y®-y =0},
{x, Y}]

| {1}

‘ Solve[{x +y* =0, -x+y+1=0, y®-y =0}, {x, y}]

|{}

To count the number of zeros of a given system of equations we need to define a standard
monomial.

Definition. Given afixed ideal | ¢ K(Xq, ..., X,) and amonomial order, then amonomial

X = x1" .. Xy iscaled standard if it isnot in the leading ideal (LT(I)).

Example. Consider (LT (1)) = < X1° %o* X3? >, then there are sixty standard monomials.
Thevariety V(1) isfiniteif and only if the set of standard monomialsisfinite, In aunivariate case

thisis the Fundamental Theorem of Algebra, which states that the variety of a univariate polyno-
mial of degree n consists of n complex numbers.
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