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"There are two main activities of mathematics:
theorem-proving and equations-solving."

Wen-tsun Wu, "Mathematics Mechanization", 2000.

"All mathematicsis divided into three parts :
cryptography (paid for by CIA, KGB and the like),
hydrodynamics (supported by manufacturers of atomic submarines)
and celestial mechanics (financed by military and NASA)"
V.Arnold, Frontiersand Perspectives, 2000.

16 Century Program [Descartes| - "Rules for the Direction of the Mind"
solving any problem —
solving problem in mathematics —
solving problem in algebra—
solving a system of polynomial equations —

solving a single polynomial equation.
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I Intersection of Surfaces

Consider a system of the following surfaces
X +y?+722-1=0
X+y?+72-2x=0
X-y+2z=0

Use plots to see the surfaces represented by these equations

Show[{ContourPl ot 3D[x -y +22z =0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}1,
Contour Pl ot 3D[x? +y2+2z?-2x =0, {x, -1, 2}, {y, -1, 2},
{z, -1, 2}, Mesh - None],
Contour Pl ot 3D[x? +y?+z%-1==0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1},
Contour Styl e » Directi ve[FaceFor m[Red, Green],
Specul arity[Wite, 3011, Mesh - None]}]

Find the points of intersection of these three surfaces by using a Groebner basis computation.

| GroebnerBasis[{x-y+2z, x?+y?+22-1, x*+y?+2?-2x}, {X, Yy, z}]

| {—1+4z+1022, ~1+2y-4z, —1+2x}

| Solve[#=208&/@%, {X, Y, Z2}]

{{x»i, yﬁllo (1-2vIF), 29110 (-2-v1a)),
1 1 (1 214 1
{Xea,yea g+ s ’Z%R(_Zer)}}
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I Introduction

m Linear system
Consider a system of linear polynomials

fi=x+y-2z=0

f=2x+3y+2z=0
We recall the Gauss-Jordan elimination (or row reduction)

fi=x+y-z=0

fa=y+4z=0
where
f3=f,—-2f;.
This processin called reduction of f, by f;, and we write

f
f, — f3

The new polynomial can be viewed as aremainder of acertain division

X+y—-2)2X+3y+ 2z
2X+ 2y -2z

y+4z

Note, if a system has more than two equations, the elimination will require more than ove divisons.

m NonLinear system in onevariable- |

Let
fi=x-2x2+2x+8=0

fb=2x +3x+1=0
We reduce f; by f5:
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—(Iy_ 7 27 39
fl—(zx 4)f2+4X+4
and thus the original system was transformed to

fi=x2—-2x2 +2x+8=0

2
fa = L X+

BN

39
4

L]

=0

Solving the linear equation and subsituting its solution to the first equation, yieldsthat the system
has no solution.

m NonLinear system in onevariable- |1

Let
f1: X6 - x3 =0
f2=)(8—X3 =0
fa=x2 - x'=0
Reduction
f, 2% foand fs -2 0
fi=x-x3=0
fa=x -3 =
f, 4
fs=x*-x3=0
f4=X5—X3 =0
Finally

f4£) f6 = X4—X3

So we end up with one equation (as Descartes wanted :-))

X*=x3=0
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m Polynomial GCD
fl =x0-x3=0

f2=X8—X3=0

fa=x2-x"=0
‘ Pol ynomi al GCD[x°® - x3, x> -x3, x' -x"]
| -x3 x4

Another example

fi=xX-2x2-3x-2=0

fb=xX+x*+1=0

fa=x2+x+1
‘ Pol ynomi al GCD[x* -2 x% -3x -2, x®+x%+1, 1+Xx +x?]
| 1+Xx +x?
fi=x-2x2+2x+8=0
f=2x2+3x+1=0
‘ Pol ynoni al GOD[x® -2x? +2x +8, 2x?+3x +1]
| 1
Definition.
A greatest common divisor (GCD) of polynomilas fy, ..., fsisapolynomial h such that

1) hdividesal fy, ..., fs

2) If pisanother polynomial that divides fy, ..., fs then p dividesh.
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Two Special Cases
1) If dl f; arelinear.
Elementary row reduction
2) All polynomiasarein one variable.
Polynomial GCD
How do you find a GCD of two polynomials,. say f and g?

Euclidian algorithm:
f =h=g+r;
GCD(f, g) = GCD(g, ri=f — 01 9)
g =M+

M = 0gz*lx + I3

fro = Qaxrz3 + 0

Our goal isto extend the notion of a polynomial GCD to a multivariate case.

I Forming a background

m Algebraof polynomials

The two main data types on which our algorithms operate are numbers and polynomials. In general,

we need a polynomial ring, and in some cases afield to support division...

Definition. A group ( G, =) isanonempty set G, closed under a binary operation * satisfying the

following axioms:

A1l. associativity: ax(bxc)=(axb)xc
A2. identity: exX=Xxxe=X, XeG
A3.inverse: xsXxt=xlsx=¢e

An abelian group (commutative group) is agroup that satisfies

A4. commutativity: axb = bxa

Definition. A ring is anonempty set R, closed under two binary operation * and + satisfying the

following:
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(R, +)isan abelian group
holds axioms A1 and A2 wrt * (it's called monoid! no inverses)
AbB. distributivity: ax(b+c)=(axb)+(@xc)
(@a+byxc =(@=c)+(bxc)
NOTE, aring does not necessarily satisfies A4 wrt *.
Field is acommutative ring in which every nonzero element has a multiplicative inverse.

We consider polynomilas f (X1, ..., X,) innvariableswith coefficientsin F (field of numbers). R
=F[Xy, ..., X,] denotesaset of all polynomials In other words, F[x1, ..., X,] will denote a polyno-
mial ring (commutative).

Example. Let R= Q[X, y] bethering of all polynomialsin x and y with coefficientsin Q.

Then V2 isnotinR, aswell asy—fx .

Also x? + 7° + 1does not belong to R.

Thewholering is huge, we will deal with asmaller subset:

m Polynomial ideals

Definition.

Anideal | isasubset of acommutative ring (R, =, +) satisfying the following properties:
1) f, hel=fHh+fhel
2 fel,reR= fxr el

Two trivial ideals: thering itself and the additive identity.

Definition. Polynomials f;, ..., fs € Rgenerateanideal

S
| = < fq, .., s> ={Y o fk, whereqx € R}
k=1

called apolynomial ideal in the ring of all polynomials.
Example.

Let R=Q{x, y] and consider theideal

= <f, fb>= <1+x 1+y>

The following are elementsin I

0, X-Y, X+ XY, Xy+xX-yx—y
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since
XRY+xX2—yx—y=x2(1+y) - y(1+X
These are not elementsin | :
1, Xy, 1+ x?

There is an analogy between ideals and subspacesin linear algebra. The differenceisthat abasis of
an ideal is NOT necessarily independent. Elements can be written in various ways. The second
differenceis that ideals may have bases with a different number of generators. Consider < x, X2 >,
that isthesameas < x> or < X + X%, X>.

The polynomial ideal has a nice interpretation in terms of polynomial equation. We can think of the
ideal isasolution set. Givenanidea < f;, .., fs>.We get the system of equation

fi=0
fs=0
One can derive other equations out of system by doing simple algebra.
a f1+...+as fSZO

The left hand side is exactly an element of theideal. The idea of using ideals for solving systemsis
not so straightforward. There are some important questions that we need to address

Q1. How do we know that an ideal is not empty?
Q2. How big anidea? Isit finite?

Since bases are not unique, perhaps there are good and bad ones. How would you find a good base?
In order to find the "better" base, we need to solve the following two problems

Problem 1 (Ideal Member ship Problem).

Given apolynomia f € R. Decidewhether it belongstotheidea | = < fi, ..., fs>.

Problem 2

Givenapolynomia f € | = < fy, ..., fs>. Determine coefficientsa;, ..., as€ R such that
f=a f1+..+asfs

We can easily solve the first problem in two particular cases

Two Special Cases

1) If al f; arelinear.

Elementary row reduction
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2) All polynomialsarein one variable.

Polynomial GCD
Theorem.
Given R[X]. Then there exist apolynomial fsuchthat| = < f >. Moreover, f = gcd(fy, ..., fo).
Proof.

LetO+ f el and minimal degree.Choose ancther g € 1.

g=fxq+r, deg(r) < deg(f).
Clearly, r could be only O, since f hasaminimal degree. Therefore, g = f = qisamultipleof f.
QED.

Question. How do you find a GCD of two polynomials,. say f and g?
Euclidian algorithm:
f =ogu=g+r;
GCD(f, 99 = GCD(g, ri=f -1 9
g = Qa1+ 112
i = Qe*rz2 + 13
ro = Qaxrz3 + 0

Question. What is an Euclidean algorithm in multivariate case? Divide
4x3 -5y + Txy?z+ 4xyZ by x+y

I Monomial order

In order to introduce division with remainder for multivariate polynomials, we need a way to order
terms. For polynomials of one variable, the natural order is by degree

X >xB if a>p
A polynomial of theform x* =x;*1 ... x,*" iscalled amonomial.
Thereis a bijection between monomials and n-tuples.

X171 X - (@, @, .., en) €20,

Therefore, any ordering on the space Z7, will give us an ordering on monomials.
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Definition.

Monomial order on F[Xx; ..., X,] isarelation satisfying the following
1) total order: monomials are comparable in the order, i.e.

either x* > xforxt = xPor x¢ < x#

2) multiplicative property:  if X2 > xXf = x¥ X' > ¥ x
3) well-order: aset of monomials has aleast element.

Here sre standard examples of monomial orders:

Lexicographical Order: (with X3 > X > ... > X,)
X > X8 if the leftmost nonzero entry in a-3 is positive.

Inlex order avariable dominates over any monomials involving only smaller variables

Example 1.
X1 %02 >1ex X2 Xa”
a={1, 2, 0}
B={0, 3, 4}
a-B=(1,-1,-4)
Example 2.
X1 >ex X2
Example 3.
X >ex Y22

Graded Lexicographical Order:
X >giex X if Yoy > Ypior
Yai = LB and x* e XP
Examples,
Xp X3? >grlex Xo? >grlex X1
X3 >grlex X2 X3°
X1 X0 X4 >griex X1 Xa”
Graded Reverse Lexicographical Order:
Xt >qeiex X if Yy > YBior
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xai = 2B
and the right-most nonzero in a-8 is negative
Example
X1 X3 >greviex X1 X2 X4
since
(1,0,2,0) - (1,1,0,1) =(0,-1,2,-1)
Example

Xyz > greviex Xty 7

grlex
grlexislooking for alarger variablein alarger power
greviexislooking for asmaller variable in a smaller power
Example. Consider x> y > z
4x3 —5y* + Txy?z+ 4xyZ € Q[X, Y, Z
Lexicographical Order: 4x3 + Txy’z+ 4xyzZ> - 5y
Graded Lexicographical Order: 7xzy?*+4xZ2y-5y*+4x3
Graded Reverse Lexicographical Order: - 5y* +7Xy? z+4xyZ +4x3
Notations: Let f = Y ¢ XK.
The multidegree f ismdeg( f) isthe max exponent wrt to order.
The leading coefficient of f is LC(f)= Crnaeg
The leading monomial of f isLM(f) = xMded
Theleadingtermof f isLT(f) = LC(f)LM(f)
Example.
f=4x3 -5y +7xy?z+4xyZ7
Lexicographical Order: 4x3 + 7xy?z+ 4xyz> — 5y*
mdeg={3,00); LC=4; LM=x°
Graded Lexicographical Order: 7xy?z+4xyz - 5y* +4x3
mdeg={1,21); LC=7; LM =xy?z
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m Multivariate division with remainder

Fix amonomial order on R = F[Xxy, ..., X,]. andlet | = < fy, ..., fs>andge R Wewant to
determine whether g € |. The basic ideais the same asin one-dimensional case, however some
carewill be needed to characterize the remainder. The goal isto divide g by f;, ..., fswhich means

g=a f1 + ... +asfs+r
wherea,andr arein F[Xy, ..., Xal.
Example: (Iexicographical order) Determine whether g € < f;, fo >, where
<fy, fo>= <xy-1,y?>-1>
g=xXy + Xy + Y
We will divide g by f; and then by f,
Xy -1 -1 rem

~(¢y-x)

y+1 y+1
Therefore,
=Xy + XY +y=X+yY)f1+ Hh+X+y+1

Seems that the division algorithm can solve the membership problem: if we obtain by division that
the remainder is zero then a polynomial belongsto the ideal. Unfortunately, rem = O is only suffi-
cient condition.
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Example: (Iexicographical order)

<fy, fo>= <xy+1 y?>-1>

g = Xy - x

Dividinggby < fy, fo >, yieldsg = yfi + (-x-y)
Dividingg by < f,, f; >, yieldsg = x f

This example shows, that if g | it isstill possible to obtain a nonzero remainder. So our basisis
not perfect! We need to search for a"better" one!

m Generalized Division Algorithm
Input: f1,f¥2,...,fs, g
Output: al,a2,...,as, r
al = 0 1<=i<=s; r :=0; p :=g
WHILE (p<>0) DO
1 =1
dividing := true
WHILE i<=s AND dividing DO
IF LT(Fi) divides LT(p) THEN
ai = ai + LT(p)/LT(Fi)
p := p - (LT(P)/LT(Fi)) * fi
dividing := false
ELSE

-
I
-
+
=

IF (dividing) THEN
r :=r + LT(p)
p:=p - LT(P)
Clearly the algorithm is a generalized form of the high school division algorithm. The variable p

represents the intermediate dividend at each stage. Aslong as the leading term of adivisor divides
the leading term of p, the algorithm proceeds as in the one-variable case. Otherwise, we remove the

leading term of p and add it to the remainder.
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