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"There are two main activities of mathematics:

theorem-proving and equations-solving."

                                              Wen-tsun Wu, "Mathematics Mechanization", 2000.
 

"All mathematics is divided into three parts :    

cryptography (paid for by CIA, KGB and the like), 

hydrodynamics (supported by manufacturers of atomic submarines) 

and celestial mechanics (financed by military and  NASA)"

                                              V.Arnold,  Frontiers and Perspectives, 2000.
 

16 Century Program [Descartes] - "Rules for the Direction of the Mind"

solving any problem ® 

solving problem in mathematics ®

solving problem in algebra ®

solving a system of polynomial equations ®

solving a single polynomial equation.
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Intersection of Surfaces 
Consider a system of the following surfaces

x2 + y2 + z2 - 1 = 0

x2 + y2 + z2 - 2 x = 0

x - y + 2 z = 0

Use plots to see the surfaces represented by these equations

ShowA9ContourPlot3D@x - y + 2 z � 0, 8x, -1, 1<, 8y, -1, 1<, 8z, -1, 1<D,

ContourPlot3DAx2 + y2 + z2 - 2 x � 0, 8x, -1, 2<, 8y, -1, 2<,

8z, -1, 2<, Mesh ® NoneE,

ContourPlot3DAx2 + y2 + z2 - 1 � 0, 8x, -1, 1<, 8y, -1, 1<, 8z, -1, 1<,

ContourStyle ® Directive@FaceForm@Red, GreenD,

Specularity@White, 30DD, Mesh ® NoneE=E

Find the points of intersection of these three surfaces by using a Groebner basis computation.

GroebnerBasisA9x - y + 2 z, x2 + y2 + z2 - 1, x2 + y2 + z2 - 2 x=, 8x, y, z<E

9-1 + 4 z + 10 z2, -1 + 2 y - 4 z, -1 + 2 x=

Solve@ð � 0 & �� %, 8x, y, z<D
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Introduction

à Linear system 

Consider a system of linear polynomials

f1 = x + y - z = 0

f2 = 2 x + 3 y + 2 z = 0

We recall the Gauss-Jordan elimination (or row reduction)

f1 = x + y - z = 0

f3 = y + 4 z = 0

where

 f3 = f2 - 2 f1. 

This process in called reduction of f2 by f1, and we write

f2 �
f1

f3

The new polynomial can be viewed as a remainder of a certain division

2

-----------

x + y - z L 2 x + 3 y + 2 z

2 x + 2 y - 2 z

___

y + 4 z

Note, if a system has more than two equations, the elimination will require more than ove divisons.

à NonLinear system in one variable - I

Let

f1 = x3 - 2 x2 + 2 x + 8 = 0

f2 = 2 x2 + 3 x + 1 = 0

We reduce f1 by f2:
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f1 = I 1

2
x - 7

4
M f2 + 27

4
x + 39

4

and thus the original system was transformed to

f1 = x3 - 2 x2 + 2 x + 8 = 0

f3 = 27

4
x + 39

4
= 0

Solving the linear equation and subsituting its solution to the first equation, yields that the system 
has no solution.

à NonLinear system in one variable - II

Let

f1 = x6 - x3 = 0

f2 = x8 - x3 = 0

f3 = x12 - x7 = 0

Reduction

f2 �
f1

f4 and  f3 �
f2

0

f1 = x6 - x3 = 0

f4 = x5 - x3 = 0

f1 �
f4

f5

f5 = x4 - x3 = 0

f4 = x5 - x3 = 0

Finally

f4 �
f5

f6 = x4 - x3  

So we end up with one equation (as Descartes wanted :-))

x4 - x3 = 0
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à Polynomial GCD

f1 = x6 - x3 = 0

f2 = x8 - x3 = 0

f3 = x12 - x7 = 0

PolynomialGCDAx6 - x3, x5 - x3, x12 - x7E

-x3 + x4

Another example

f1 = x4 - 2 x2 - 3 x - 2 = 0

f2 = x5 + x4 + 1 = 0

f3 = x2 + x + 1

PolynomialGCDAx4 - 2 x2 - 3 x - 2, x5 + x4 + 1, 1 + x + x2E

1 + x + x2

f1 = x3 - 2 x2 + 2 x + 8 = 0

f2 = 2 x2 + 3 x + 1 = 0

PolynomialGCDAx3 - 2 x2 + 2 x + 8, 2 x2 + 3 x + 1E

1

Definition. 

   A greatest common divisor (GCD) of polynomilas f1, ..., fs is a polynomial h such that

      1) h divides all f1, ..., fs 

      2) If p is another polynomial that divides f1, ..., fs   then p divides h.
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Two Special Cases

1) If all fi are linear. 

Elementary row reduction 

2) All polynomials are in one variable. 

Polynomial GCD

How do you find a GCD of two polynomials,. say f  and g?

Euclidian algorithm:

f = q1 * g + r1

GCDH f , gL = GCDHg, r1 = f - q1 gL
g = q2 * r1 + r2

r1 = q3 * r2 + r3

r2 = q4 * r3 + 0

Our goal is to extend the notion of a polynomial GCD to a multivariate case.

Forming a background

à Algebra of polynomials

The two main data types on which our algorithms operate are numbers and polynomials. In general, 
we need a polynomial ring, and in some cases a field to support division...

Definition. A group ( G, *) is a nonempty set G, closed under a binary operation * satisfying the 

following axioms:

A1. associativity: a * Hb * cL = Ha * bL * c

A2. identity: e * x = x * e = x, x Î G

A3. inverse: x * x-1 = x-1 * x = e

An abelian group (commutative group) is a group that satisfies

A4. commutativity: a * b = b * a

Definition. A ring is a nonempty set R, closed under two binary operation * and + satisfying the 
following:

(R, +) is an abelian group

holds axioms A1 and A2 wrt * (it’s called monoid! no inverses)

A5. distributivity: a * Hb + cL = Ha * bL + Ha * cL
Ha + bL * c = Ha * cL + Hb * cL
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Definition. A ring is a nonempty set R, closed under two binary operation * and + satisfying the 
following:

(R, +) is an abelian group

holds axioms A1 and A2 wrt * (it’s called monoid! no inverses)

A5. distributivity: a * Hb + cL = Ha * bL + Ha * cL
Ha + bL * c = Ha * cL + Hb * cL

NOTE, a ring does not necessarily satisfies A4 wrt *. 

Field is a commutative ring in which every nonzero element has a multiplicative inverse.

We consider polynomilas f Hx1, ..., xnL in n variables with coefficients in F (field of numbers).  R 

= F@x1, ..., xnD denotes a set of all polynomials  In other words, F@x1, ..., xnD will denote a polyno-

mial ring (commutative).

Example.  Let R = Q@x, yD be the ring of all polynomials in x and y with coefficients in Q. 

Then 2  is not in R, as well as x

y+x
 . 

Also x2 + z2 + 1does not belong to R.

The whole ring is huge, we will deal  with a smaller subset:

à Polynomial ideals

Definition. 

An ideal I  is a subset of a commutative ring HR, * , +L satisfying the following properties:

1)   f1, f2 Î I � f1 + f2 Î I

2)   f Î I , r Î R � f * r Î I

Two trivial ideals: the ring itself and the additive identity.

Definition. Polynomials  f1, ..., fs Î R generate an ideal

I = < f1, ..., fs > = { Ú
k=1

s
qk fk , where qk Î R}

called a polynomial ideal in the ring of all polynomials.

Example.

Let R = Q 8x, yD and consider the ideal

I = < f1, f2 > = < 1 + x, 1 + y >

The following are elements in I : 

0,      x - y,         x + x y,       x2 y + x2 - y x - y            
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since

x2 y + x2 - y x - y = x2 H 1 + yL - y H1 + xL
These are not elements in I : 

1,       x y,         1 + x2

There is an analogy between ideals and subspaces in linear algebra.  The difference is that a basis of 
an ideal is NOT necessarily independent. Elements can be written in various ways. The second 
difference is that ideals may have bases with a different number of generators. Consider < x, x2 >, 
that is the same as < x > or < x + x2, x >.

The polynomial ideal has a nice interpretation in terms of polynomial equation. We can think of the 
ideal is a solution set. Given an ideal < f1, .., fs >. We get the system of equation

f1 = 0
...

fs = 0

One can derive other equations out of system by doing simple algebra. 

a1 f1 + ... + as fs = 0

The left hand side is exactly an element of the ideal. The idea of using ideals for solving systems is 
not so straightforward. There are some important questions that we need to address

Q1. How do we know that an ideal is not empty? 

Q2. How big an ideal?  Is it finite?

Since bases are not unique, perhaps there are good and bad ones. How would you find a good base? 
In order to find the "better" base, we need to solve the following two problems

Problem 1 (Ideal Membership Problem).

Given a polynomial f Î R. Decide whether it belongs to the ideal I = < f1, ..., fs >.

Problem 2

Given a polynomial f Î I = < f1, ..., fs >. Determine coefficients a1, ..., as Î R such that

f = a1 f1 + ... + as fs

We can easily solve the first problem in two particular cases

Two Special Cases

1) If all fi are linear. 

Elementary row reduction 

2) All polynomials are in one variable. 

Polynomial GCD
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2) All polynomials are in one variable. 

Polynomial GCD

Theorem.  

Given R@xD. Then there exist a polynomial f such that I = < f >. Moreover, f = gcdH f1, ..., fsL.
Proof.

Let 0 ¹ f Ε I  and minimal degree.Choose another g Î I . 

 g = f * q + r,      degHrL < degH f L. 
Clearly, r could be only 0, since f  has a minimal degree. Therefore, g = f * q is a multiple of f . 

QED.

Question. How do you find a GCD of two polynomials,. say f  and g?

Euclidian algorithm:

f = q1 * g + r1

GCDH f , gL = GCDHg, r1 = f - q1 gL
g = q2 * r1 + r2

r1 = q3 * r2 + r3

r2 = q4 * r3 + 0

Question. What is an Euclidean algorithm in multivariate case? Divide   
4 x3 - 5 y4 + 7 x y2 z + 4 x y z2    by    x + y

Monomial order
In order to introduce division with remainder for multivariate polynomials, we need a way to order 
terms.  For polynomials of one variable, the natural order is by degree

xΑ > xΒ if Α > Β

A polynomial of the form  xΑ =x1
Α1 ... xn

Αn  is called a monomial.

There is a bijection between monomials and n-tuples.

x1
Α1 ... xn

Αn  ® HΑ1, Α2, ..., ãnL Î Z³0
n

Therefore, any ordering on the space Z³0
n  will give us an ordering on monomials.

Definition.

Monomial order on F@x1 ..., xnD is a relation satisfying the following

1) total order: monomials are comparable in the order, i.e.

    either xΑ > xΒ or xΑ = xΒ or  xΑ < xΒ

2) multiplicative property: if xΑ > xΒ � xΑ xΓ > xΒ xΓ

3) well-order: a set of monomials has a least element.
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Definition.

Monomial order on F@x1 ..., xnD is a relation satisfying the following

1) total order: monomials are comparable in the order, i.e.

    either xΑ > xΒ or xΑ = xΒ or  xΑ < xΒ

2) multiplicative property: if xΑ > xΒ � xΑ xΓ > xΒ xΓ

3) well-order: a set of monomials has a least element.

Here sre standard examples of monomial orders:

Lexicographical Order: (with x1 > x2 > ... > xnL
xΑ >lex xΒ      if the leftmost nonzero entry in Α-Β is positive.

In lex order a variable dominates over any monomials involving only smaller variables

Example 1.

x1 x2
2 >lex x2

3 x3
4     

Α={1, 2, 0}

Β ={0, 3, 4}

Α - Β = (1, -1, -4)

Example 2.

x1 >lex x2
3

Example 3.

x >lex  y2 z5

Graded Lexicographical Order: 

xΑ >grlex xΒ      if     ÚΑi > Ú Βi or 

          ÚΑi = Ú Βi and xΑ >lex xΒ

Examples,

x2 x3
2 >grlex x2

2 >grlex x1

x2
3 >grlex x2 x3

2

x1 x2 x4 >grlex x1 x3
2

Graded Reverse Lexicographical Order: 

xΑ >grevlex xΒ   if   ÚΑi > Ú Βi or 

       ÚΑi = Ú Βi 

       and the right-most nonzero in Α-Β is negative
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xΑ >grevlex xΒ   if   ÚΑi > Ú Βi or 

       ÚΑi = Ú Βi 

       and the right-most nonzero in Α-Β is negative

Example

x1 x3
2 >grevlex x1 x2 x4

since

(1,0,2,0) - (1,1,0,1)   = (0,-1,2,-1)

Example

x5 y z >grevlex
grlex

x4 y z2

grlex is looking for a larger variable in a larger power

grevlex is looking for a smaller variable in a smaller power

Example. Consider x > y > z

4 x3 - 5 y4 + 7 x y2 z + 4 x y z2 Î Q@x, y, zD
Lexicographical Order:         4 x3 + 7 x y2 z + 4 x y z2 - 5 y4

Graded Lexicographical Order:  7 x z y2 + 4 x z2 y - 5 y4 + 4 x3

Graded Reverse Lexicographical Order:     - 5 y4 + 7 x y2 z + 4 x y z2 + 4 x3

Notations:      Let  f = Úck xk . 

   The multidegree f  is mdegH f L is the max exponent wrt to order.

   The leading coefficient of f  is LCH f L= cmdeg

   The leading monomial of f  is LMH f L = xmdeg

   The leading term of f  is LTH f L = LCH f L LMH f L
Example. 

f = 4 x3 - 5 y4 + 7 x y2 z + 4 x y z2

Lexicographical Order:  4 x3 + 7 x y2 z + 4 x y z2 - 5 y4

mdeg = {3,0,0);  LC = 4;  LM = x3

Graded Lexicographical Order:  7 x y2 z + 4 x y z2 - 5 y4 + 4 x3

mdeg = {1,2,1);  LC = 7;  LM = x y2 z
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à Multivariate division with remainder

Fix a monomial order on R = F@x1, ..., xnD.  and let  I = < f1, ..., fs > and g Î R. We want to 

determine whether g Î I . The basic idea is the same as in one-dimensional case, however some 

care will be needed to characterize the remainder. The goal is to divide g by f1, ..., fs which means

g = a1 f1 + ... + as fs + r

where ak  and r are in F@x1, ..., xnD.
Example: (lexicographical order) Determine whether g Î < f1, f2 >, where

< f1, f2 > = < x y - 1, y2 - 1 >

g = x2 y + x y2 + y2

We will divide g by f1 and then by f2

                                    x y - 1              y2 - 1         rem

----------------------------------------------------------------------------

x2 y + x y2 + y2        x

-Ix2 y - xM
----------------------------------------------------------------------------

x y2 + x + y2            y

-Ix y2 - yM
-----------------------------------------------------------------------------

x + y2 + y                                                               x

----------------------------------------------------------------------------

y2 + y                                                    1

-Iy2 - 1M
----------------------------------------------------------------------------

y + 1                                                                       y + 1

Therefore,

g = x2 y + x y2 + y2 =  Hx + yL f1 + f2 + Hx + y + 1L
Seems that the division algorithm can solve the membership problem: if we obtain by division that 
the remainder is zero then a polynomial belongs to the ideal. Unfortunately, rem = 0 is only suffi-
cient condition.
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Example: (lexicographical order)

< f1, f2 > = < x y + 1, y2 - 1 >

g = x y2 - x

Dividing g by < f1, f2 >, yields g = y f1 + H- x - yL
Dividing g by < f2, f1 >, yields g = x f2

This example shows, that if g Î I  it is still possible to obtain a nonzero remainder. So our basis is 

not perfect! We need to search for a "better" one!

à Generalized Division Algorithm

Input: f1,f2,...,fs, g

Output: a1,a2,...,as, r

ai := 0 1<=i<=s; r := 0; p := g

   WHILE (p<>0) DO

         i := 1

         dividing := true

         WHILE i<=s AND dividing DO

                  IF LT(fi) divides LT(p) THEN

                           ai := ai + LT(p)/LT(fi)

                           p := p - (LT(p)/LT(fi)) * fi

                           dividing := false

                  ELSE

                            i := i+1

         IF (dividing) THEN

                  r := r + LT(p)

                  p := p - LT(p)

Clearly the algorithm is a generalized form of the high school division algorithm. The variable p 

represents the intermediate dividend at each stage. As long as the leading term of a divisor divides 
the leading term of p, the algorithm proceeds as in the one-variable case. Otherwise, we remove the 

leading term of p and add it to the remainder.
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