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I PetkovSek's algorithm

"All the wonders of our universe can in effect be captured by
simplerules, yet [...] there can be no way to know all
the consequences of these rules, except in effect just
to watch and see how they unfold."

Stephen Wolfram, "A New Kind of Science”, p. 846.

Algorithm

The algorithm deals with finding a hypergeometric term solution to

N
D dimsin+ =0

j=0
where d; are polynomialsin n. For simplicity, let us consider a second order equation

d2(nN) SN+ 2) + dy(n) S(n+ 1) + dp(n) S(N) =0 Q)
where S(n) is assumed to be a hypergeometric term

Sn+1)
S0)
If al dg(n) are constants then we solve the equation by means of the characteristic equation
A2+ diA+ dy=0

e Q(n)

The roots of this equation define the general solution
Sn) = ci A+ ¢ A)

If di(n) is polynomialsin n then proceed in the following way. Divide (1) by S(n)
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Sn+2) Sn+1)

dx(n) W + dq(n) ) + do(n) =0
or
Sn+2) Sn+1) Snh+1)
da(n) Sn+D S + dy(n) S0 + do(n) =0 (2

From the Gosper's algorithm, we know that any rational function can be represented as
Sn+1) pin+1) qin+1)
=C

S(n) p(n) r(n+1) )
where p(n), q(n), r(n) aremonic (theleading coefficientis1) and coprime
GCD(q(n), r(n+ ) =1, je No.
GCD(p(n), q(n+1) =1,
GCD(p(n), r(m) =1,
Substituting (3) into (2), yields
L L L T
Multiply it by p(n) r(n+ 1) r(n+ 2) to get
¢ dx(n) p(n+2)qn+ 1) gqn+ 2) +
cdi(n) p(n+L)gn+1)r(n+2)+ 4

do(n) pm)rin+1Lr(n+2) =0
Remember, our goal isto find p(n), q(n), r(n) and constant c.

Thelogic in the next paragraph is somewhat similar to the proof of step 2 in Gosper's
algorithm.

Thefirst two terms of (4) are divisible by q(n + 1), therefore the last term do(n) p(n) r(n+ 1) r(n + 2)
must be divisible by q(n+ 1). Since p, g andr arerelatively prime, then q(n + 1) must divide dyg(n). In
other words, g(n + 1) must be afactor of dyg(n). This leads usto the finite number of choicesfor
qin+1).

The last two terms of (4) aredivisible by r(n + 2), therefore the first term must be divisible by r(n + 2).
Since p, qandr arerelatively prime, then r(n+ 2) must divide d,(n). In other words, r(n + 2) must be
afactor of dy(n). Thisleads usto finite number of choicesfor r(n + 2).

Once we know g and r, we can easily find arational constant c. Divide (4) by q(n+ 1) r(n + 2)
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c? da(y p(n+2)qn+2) +
rin+2)

cdi(n) p(n+1) +
do(n)
aqin+1)

pinrin+1) =0

This gives us an equation with polynomial coefficients. Equating the leading coefficient to zero,
generates a quadratic equation for c. But p(n) is still unknown. ??? hmm... Whereisacatch? p(n) isa
monic polynomial.

Now the last step.
So far we found the constant ¢ and two polynomialsq and r. To find the polynomia p we
must solve (5). Since al coefficientsin (5) are polynomials, we need to find a polynomial solution.
Let us consider a generic equation of the second order with polynomial coefficients
aMYN+2)+ ay(n)Y(n+ 1)+ ap(n) Y(n) =0
We need to find an upper bound for the degree of a polynomial solution. Assume the following
() = apn®+ ap1nP 1+
(N = Bpn” + B an" 1+ ...
ao(N) = ypn° +yp1n" L+ ...
where P isthe maximal degree of a,, a; andag, and all coefficentsaj, 3;, v; are known. We are
looking for amonic polynomial solution
Y= nM + oy nM-1 4
YN+ =n"+ M +6y_)nM 1+ ..
YN+2)=n" + @M +6y_)nV 1+ ..

where order M and coefficients dx are to be determined. Substitute these into the difference equation
and take coefficients of the first three dominant terms. We obtain

M+P

n Sap+ Bp+yp

M Pt g+ Bpa+ypa+ M Rap+ Bp) + (@p+ Bp+¥p) Om1

1 B
nM+P=2. -2(4ap+,8p)M2+ Zap_1+,3p—1—20p—?p+(2“p+:3p)5'\/|—1 M+

Bp-1—PBp+7Yp-1)0m-1
Each of them must be zero. Start with the first
@p+pPp+yp=0 (6)

If this condition is not satisfied, then no polynomial solution exists. Suppose (6) is satisfied, then the
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next coefficient gives

@p-1+ Bp-1+vp-1+MQ2ap+Bp) +(ap+Bp+ypom-1=0

or
ap-1+ PBp-1+yp-1+MQ2ap+Lp =0
This splits into two subcases
1) case
2ap+pPp* 0
then the order M is uniquely defined from (7)

@p-1+ Pp-1+7Yp-1
2ap+ Bp

M=-—

2) case
2ap+B,=0
Then
ap-1+ Bp-1+7p-1=0

and we must look at the next coefficient (a coefficient by n"M+P-2) that is

(7)

(8)

(9)

(10)

Observe, that ap # 0O, because otherwise 3, = 0 and then by (6) v, = 0, which will contradict to the

assumption that p has amaximal degree of p,, p1and po. Therefore, equation (10) has two solutions,

one (or both) defines the upper degree of a polynomial solution.

Example

Find a hypergeometric term solution to

9N+2)SN+2)-3(n+4)SN+1) —2(n+3)SN)=0

S0=31=1
We assume that
Sn+1) e p(n+1) qin+1)
Sn) p(n) r(n+1)
where

g(n+ 1) must divide do(n)

r(n+ 2) must divide do(n)
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Here are our choices

gin+1)iseitherlorn+3

r(n+2)isether Lorn+ 2

m g(ntl) =1; r(n+2)=1
We find constant ¢ from the equation (since p, qand r are monic, we replace them by 1 in equation
(9)
c?dy(n) + cdy(n) + do(n) =0

that simplifiesto

9N+2)c?-3(N+4)c-2(n+3)=0

n(9c®-3c-2)+6(3c*-2¢c-1)=0
Solving

9¢?-3¢c-2=0

we obtain

Note, constant c is defined only by aleading coefficient of equation (5).

Casel. c=—-;

We need to find a polynomial solution to
N+2)pn+2)+(n+4) p(n+1)-2(n+3) p(n) =0
Compute
ap+Pp+yp=1+1-2=0
ap1+PBp-1+yp-1+MQ2ap+pp=2+4-6+M2+1)=0
The solution p(n) isaconstant, since M = 0. Therefore, we have
Sin+1) e p(n+1) gqin+1) B -1 pn+1) 1 B 1

S(n) pm rn+l) 3 pn 1 3

Yn—( 1)n
(n) = 3

We find an upper bound on the polynomial solution

or

Case2. Cc= 2
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@2n+4pn+2)—-N+4) pn+1)— (n+3) p(n)=0
The first condition (the sum of leading coefficients should be zero)
ap+Pp+yp=0
The next condition
ap-1+Pp-1+yp1+MQ2ap+Bp) =0

whichis

3M-3=0
So, the solution is linear

p(nN)=n + X

where x is unknown. We find x by substituting p(n) into the original equation

2n+4dN+2+X-N+dHDN+1+X - (N+3)(n+X)=0

Thissimplifiesto

4-3x=0
Thus,
4
|o(n)=n+-3
And
Sn+1) p(n+1) qin+1) 2”+'; 1 23n+7
S(n) ¢ pn) rn+1) - 3 n+.§ 1 - 33n+4
or
3n+4(2\"
W= (3)
Finally, we combine the above two cases to get a general solution
1\" 3n+4(2\"
sm=a (3] e[
where unknown c; and ¢, can be easily found from theinitial conditions
S0=31=1
We get a system of two linear equations
CL+c=1

3]s (5)-
Ccil--[+c- |- ]|=
W3 a3
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solving each, yields

1 8
ci=- andc=-
17 "9

Hence,

s 1( 1)” 83n+4(2)”
nN=-|[--1+ - -
o\ 3 9 4 \3
m g(n+l) =1; r(n+2)=n+2
Equation for constant c

—2n°+(-3c-8)n+3(3c°-4c-2)=0

Such constant ¢ does not exist

m q(n+l) = n+3; r(n+2)=1
Equation for constant ¢

9¢*n*+3c(18c-1)n+2(36c*-6c-1)=0
It has only atrivial solution ¢ = 0.

m q(n+1) = n+3; r(n+2)=n+2
This case cannot be chosen, since they have a common polynomial GCD:
g[n_]l:=n+2;

rgn_l:=n
Tabl e [Pol ynom al GCD[q[n], r[h+] 1], {j, 0, 5}]

| (1, 1, 2+n, 1, 1, 1}
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