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Petkovšek's  algorithm

"All the wonders of our universe can in effect be captured by

 simple rules, yet [...] there can be no way to know all 

 the consequences of these rules, except in effect just 

 to watch and see how they unfold."

                                              Stephen Wolfram, "A New Kind of Science", p. 846.

Algorithm 

The algorithm deals with finding a hypergeometric term solution to

â
j=0

N

d jHnL SHn + jL = 0

where d j are polynomials in n. For simplicity, let us consider a second order equation

(1)d2HnL SHn + 2L + d1HnL SHn + 1L + d0HnL SHnL = 0

where SHnL is assumed to be a hypergeometric term

SHn + 1L
SHnL Î QHnL 

If all dkHnL are constants then we solve the equation by means of the characteristic equation

d2 Λ2 + d1 Λ + d0 = 0

The roots of this equation define the general solution

SHnL = c1 Λ1
n + c2 Λ2

n

If dkHnL is polynomials in n then proceed in the following way. Divide (1) by SHnL
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d2HnL SHn + 2L
SHnL + d1HnL SHn + 1L

SHnL + d0HnL = 0

or

(2)d2HnL SHn + 2L
SHn + 1L  

SHn + 1L
SHnL + d1HnL SHn + 1L

SHnL + d0HnL = 0

From the Gosper's algorithm, we know that any rational function can be represented as

(3)
SHn + 1L

SHnL = c
pHn + 1L

pHnL  
qHn + 1L
rHn + 1L

where pHnL, qHnL, rHnL are monic Hthe leading coefficient is 1L  and coprime

GCDHqHnL, rHn + jLL = 1, j Î N0.

GCDHpHnL, qHn + 1LL = 1,

GCDHpHnL, rHnLL = 1,

Substituting (3) into (2), yields

d2HnL c
pHn + 2L
pHn + 1L  

qHn + 2L
rHn + 2L  c

pHn + 1L
pHnL  

qHn + 1L
rHn + 1L + d1HnL c

pHn + 1L
pHnL  

qHn + 1L
rHn + 1L + d0HnL = 0

Multiply it by pHnL rHn + 1L rHn + 2L to get

(4)

c2 d2HnL pHn + 2L qHn + 1L qHn + 2L +

c d1HnL pHn + 1L qHn + 1L rHn + 2L +

d0HnL pHnL rHn + 1L rHn + 2L = 0

Remember, our goal is to find pHnL, qHnL, rHnL and constant c.

The logic in the next paragraph is somewhat similar to the proof of step 2 in Gosper's 
algorithm.

The first two terms of (4) are divisible by qHn + 1L, therefore the last term d0HnL pHnL rHn + 1L rHn + 2L 
must be divisible by qHn + 1L. Since p, q and r are relatively prime, then qHn + 1L must divide d0HnL. In 

other words, qHn + 1L must be a factor of d0HnL. This leads us to the finite number of choices for 

qHn + 1L.
The last two terms of (4) are divisible by rHn + 2L, therefore the first term must be divisible by rHn + 2L. 
Since p, q and r are relatively prime, then  rHn + 2L must divide d2HnL. In other words, rHn + 2L must be 

a factor of d2HnL. This leads us to finite number of choices for rHn + 2L.
Once we know q and r, we can easily find a rational constant c. Divide (4) by qHn + 1L rHn + 2L

(5)
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(5)

c2 d2HnL
rHn + 2L pHn + 2L qHn + 2L +

c d1HnL pHn + 1L +

d0HnL
qHn + 1L pHnL rHn + 1L = 0

This gives us an equation with polynomial coefficients. Equating the leading coefficient to zero, 
generates a quadratic equation for c. But pHnL is still unknown. ??? hmm... Where is a catch? pHnL is a 

monic polynomial.

Now the last step. 

So far we found the constant c and two polynomials q and r. To find the polynomial p we 

must solve  (5). Since all coefficients in (5) are polynomials, we need to find a polynomial solution.

Let us consider a generic equation of the second order with polynomial coefficients

a2HnL Y Hn + 2L + a1HnL Y Hn + 1L + a0HnL Y HnL = 0

We need to find an upper bound for the degree of a polynomial solution. Assume the following

a2HnL = Αp nP + Αp-1 nP-1 + ...

a1HnL = Βp nP + Βp-1 nP-1 + ...

a0HnL = Γp nP + Γp-1 nP-1 + ...

where P is the maximal degree of a2, a1 and a0, and all coefficents Α j, Β j, Γ j are known. We are 

looking for a monic polynomial solution

Y HnL = nM + ∆M -1 nM -1 + ...

Y Hn + 1L = nM + HM + ∆M -1L nM -1 + ...

Y Hn + 2L = nM + H2 M + ∆M -1L nM -1 + ...

where order M  and coefficients ∆k  are to be determined. Substitute these into the difference equation 
and take coefficients of the first three dominant terms. We obtain

nM+P : Αp + Βp + Γp

nM+P-1 : Αp-1 + Βp-1 + Γp-1 + M H2 Αp + ΒpL + HΑp + Βp + ΓpL ∆M -1

nM+P-2 : �
1

2
H4 Αp + ΒpL M2 + 2 Αp-1 + Βp-1 - 2 Αp -

Βp

2
+ H2 Αp + ΒpL ∆M -1 M +

Αp-2 + Βp-2 + Γp-2 + HΑp + Βp + Γp L ∆M -2 + HΑp-1 - 2 Αp +

Βp-1 - Βp + Γp-1 L ∆M -1

Each of them must be zero. Start with the first

(6)Αp + Βp + Γp = 0

If this condition is not satisfied, then no polynomial solution exists. Suppose (6) is satisfied, then the 

next coefficient gives
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If this condition is not satisfied, then no polynomial solution exists. Suppose (6) is satisfied, then the 

next coefficient gives

Αp-1 + Βp-1 + Γp-1 + M H2 Αp + ΒpL + HΑp + Βp + ΓpL ∆M -1 = 0

or

(7)Αp-1 + Βp-1 + Γp-1 + M H2 Αp + ΒpL = 0

This splits into two subcases

1) case

2 Αp + Βp ¹ 0

then the order M  is uniquely defined from (7)

(8)M = -
Αp-1 + Βp-1 + Γp-1

2 Αp + Βp

2) case

2 Αp + Βp = 0

Then

(9)Αp-1 + Βp-1 + Γp-1 = 0

and we must look at the next coefficient (a coefficient by nM +P-2) that is

(10)Αp M2 + H2 Αp-1 + Βp-1 - ΑpL M + Αp-2 + Βp-2 + Γp-2 = 0

Observe, that Αp ¹ 0, because otherwise Βp = 0 and then by (6) Γp = 0, which will contradict to the 

assumption that p  has a maximal degree of p2, p1 and p0. Therefore, equation (10) has two solutions, 

one (or both) defines the upper degree of a polynomial solution.

Example

Find a hypergeometric term solution to

9 Hn + 2L SHn + 2L - 3 Hn + 4L SHn + 1L - 2 Hn + 3L SHnL = 0

SH0L = SH1L = 1

We assume that

SHn + 1L
SHnL = c

pHn + 1L
pHnL  

qHn + 1L
rHn + 1L

where

qHn + 1L must divide d0HnL
 rHn + 2L must divide d2HnL

Here are our choices
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Here are our choices

qHn + 1L is either 1 or n + 3

rHn + 2L is either 1 or n + 2

à q(n+1) = 1; r(n+2)=1

We find constant c from the equation (since p, q and r are monic, we replace them by 1 in equation 

(5))

c2 d2HnL + c d1HnL + d0HnL = 0

that simplifies to

9 Hn + 2L c2 - 3 Hn + 4L c - 2 Hn + 3L = 0

n I9 c2 - 3 c - 2M + 6 I3 c2 - 2 c - 1M = 0

Solving

9 c2 - 3 c - 2 = 0

we obtain

c = - �
1

3
or c = �

2

3

Note, constant c is defined only by a leading coefficient of equation (5).

Case 1.  c = - �
1
3

We  need to find a polynomial solution to

Hn + 2L pHn + 2L + Hn + 4L pHn + 1L - 2 Hn + 3L pHnL = 0

Compute

Αp + Βp + Γp = 1 + 1 - 2 = 0

Αp-1 + Βp-1 + Γp-1 + M H2 Αp + ΒpL = 2 + 4 - 6 + M H2 + 1L = 0

The solution pHnL is a constant, since M = 0. Therefore, we have

SHn + 1L
SHnL = c

pHn + 1L
pHnL  

qHn + 1L
rHn + 1L =

-1

3
 
pHn + 1L

pHnL  �
1

1
= - �

1

3

or

Y HnL = - �
1

3

n

Case 2.  c = �
2
3

We find an upper bound on the polynomial solution
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H2 n + 4L pHn + 2L - Hn + 4L pHn + 1L - Hn + 3L pHnL � 0

The first condition (the sum of leading coefficients should be zero)

Αp + Βp + Γp = 0

The next condition

Αp-1 + Βp-1 + Γp-1 + M H2 Αp + ΒpL = 0

which is

3 M - 3 = 0

So, the solution is linear

pHnL = n + x

where x is unknown. We find x by substituting pHnL into the original equation

H2 n + 4L Hn + 2 + xL - Hn + 4L Hn + 1 + xL - Hn + 3L Hn + xL � 0

This simplifies to

4 - 3 x = 0

Thus,

pHnL = n + �
4

3

And

SHn + 1L
SHnL = c

pHn + 1L
pHnL  

qHn + 1L
rHn + 1L = �

2

3
 
n + �7

3

n + �4
3

 �
1

1
= �

2

3
 
3 n + 7

3 n + 4

or

SHnL =
3 n + 4

4
 �

2

3

n

Finally, we combine the above two cases to get a general solution

SHnL = c1 - �
1

3

n

+ c2 
3 n + 4

4
 �

2

3

n

where unknown c1 and c2 can be easily found from the initial conditions

SH0L = SH1L = 1

We get a system of two linear equations

c1 + c2 = 1

c1 - �
1

3
+ c2 �

7

4
 �

2

3
= 1

solving each, yields
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solving each, yields

c1 = �
1

9
and c2 = �

8

9

Hence,

SHnL = �
1

9
- �

1

3

n

+ �
8

9
 
3 n + 4

4
 �

2

3

n

à q(n+1) = 1; r(n+2)=n+2

Equation for constant c

-2 n2 + H-3 c - 8L n + 3 I3 c2 - 4 c - 2M = 0

Such constant c does not exist

à q(n+1) = n+3; r(n+2)=1

Equation for constant c

9 c2 n2 + 3 c H18 c - 1L n + 2 I36 c2 - 6 c - 1M = 0

It has only a trivial solution c = 0.

à q(n+1) = n+3; r(n+2)=n+2

This case cannot be chosen, since they have a  common polynomial GCD:

q@n_D := n + 2;

r@n_D := n

Table@PolynomialGCD@q@nD, r@n + jDD, 8j, 0, 5<D

81, 1, 2 + n, 1, 1, 1<
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