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I Wilf-Zeilberger's algorithm

The art of doing mathematics
consists in finding that special
case which contains all the
germs of generality -

David Hilbert

Forethoughts
F(n, k) is Gosper-summableif thereisarational function G such that
F(n, k) = G(n, k+1) — G(n, k)
Moreover, G isarational multiple of F:
G(n, k) = R(n, k) F(n, k)

I ndefinite summation:;

ZF(n, k) = Z[G(n, k+1) — G(n, k)] = G(n, k)
k k
Definite summation:

n n
> FM, k=[G, k+1) - G, k)] =Gn, n+1) - G(n, 1)
k=1 k=1
What do we do if the summand F(n, K) is not Gosper-summable? Doron Zeilberger observed that
Gosper's agorithm of indedfinite summation could be used in a non-obvious and nontrivial way,
namely for PROVING combinatorial identities.



WZ algorithm

Definition. F(n, k) hasafinite supportif F(n, k) # 0 only for finitely many k € Z and fixed
ne Np.

In other words, all such series

[s¢]

> Fn, k) @)

k=—o0

are actually finite sums.For example,

[e) n

2 (k) -

k=—c0 k=0

n
(k)
Now let look at definite series (1) where F(n, k) is Gosper-summable. Since it's telescoping, we

have

o o

SUFm k= > [N k+D - G k]=0

k=—o00 k=—o00

assuming that G(n, k) has no singularities. Thus, we deduced that

F(n, k) isGosper — summable = Z Fin, k=0

k=—00

Conversdly, if F(n, k) hasafinite support and it is a hypergeometric term, then if

Z F(n, k) # 0 =F(n, k) is not Gosper — summable

k=—00

Wilf-Zeilberger's algorithm

Wilf-Zeilberger (or in short WZ) method is an application of Gosper's algorithm to definite summa-
tion, namely proving identities of the form

S = Z Fin, k=1 (2)

k=—o0

where F is ahypergeometric term with afinite support. As we saw in the section above, the sum-
mand F is not Gosper-summable. But what can we say about its difference wrt to n?

Fin+1, k) — F(n, k)
Suppose it's Gosper-summable, therefore there exists such G(n, k) that
F(n+1, k) — F(n, k) = G(n, k+1) — G(n, k) 3
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where G isarational multiple of F. Summing (3) over all k, yields

(o] [o0]

Y IF+1,k - Fn k] = > [Gn, k+1) - G, k)]

k=—c0 k=—c0

The right-hand side is telescoping to zero, while the left hand side becomes S,,1 — S,. Thisgivesa
linear recurrence equation of the first order

Si1-SH=0
Hence, S, isaconstant. Lastly, we need to make surethat & = 1.

N Don't ask:
what can the Computer do for me?

But rather:
what can | for the Computer?

|| mareR=e) k
The trend in mathematics these daysis started to go from computer-assisted conjecturesto com-

puter-generated conjectures and then proofs.

computer-assisted conjectures. Pythagoras, Archimedes, Euler, Gauss, Riemann and all the other
giants, who did extensive experimentation to find conjectures...

computer-generated conjectures. There exist powerful software packages that automatically finds
conjectures, but without proving them. We will consider them later in the course.

computer-assisted proofs. Many proofs nowadays are computer-assisted, but in most of them com-
puters are not mentioned. For example, Coq system.

computer-generated proofs. The first full-fledged computer-generated proofs started with WZ
theory. In 1931, Kurt Godel proved that every consistent system of axioms is necessarily
incomplete.

m Example 1 (Vandermonde's identity)
Prove

2)=("%)
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Pr oof.

We rewrite thisidentity in the form

[o¢]

Z Fn, k)= 1

k=—o0

where

Introduce
s =Fn+1, k) — F(n, k)
and apply Gosper's algorithm to s;. If it's Gosper-summable, we find such G(n, k) that
Fin+1, k) — F(n, k) =G(n, k+1) — G(n, k)
First we show that s is a hypergeometric term
S+l

=(k-a)(k-n-1(1+k+ak+n-an+kn)/(k+1?(-a+k+ak-an+kn))

We choose
pck = —a+k+ak—an+kn
Ok+1 = (k—a)(k-n-1)
Mt = (K+1)7
A difference equation
Ok+1 fk =k f-1 = Pk

k—a)(k—-n—-1) fy—k® f,_; = —a+k+ak—an+kn

Itspolynomial solutionisaconstant fy = —1. Therefore, our function G(n, k) is
G(n, k) =z = % fieise = —(a®nt?) /(k-D1?@-Kk! @+n+D! (n—k+1)!)

k
or
~ (k—-a-1)

Gn, k)= ——
(n. %) @a+n+1

F(n, k—=1)
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Finally, we need to prove theinitial case, namely that the sum
ay(n
()

e (n+a)
a

- (W) ()(o)

=1

isl1for n= 0, whichisindeed so:

m Certificate
This pair of function (G, F)isaWZ-pair
F(in+1, k) — F(n, k) = G(n, k+1) — G(n, k) 4
The ratiomal function R(n, k)
G(n, k)
F(n, k)

R(n, k) =

is called a certificate. Knowing R(n, k) we can restore G(n, k) and then verify identity (5). The
latter is done by dividing (4) by F(n, k)
F(n+1, k) 1 Gin,k+1)  G(n, k)
Fnk — Fink  Fnk

and making use
G(n, k) = R(n, k) F(n, k)
we obtain
F(in+1, k) F(n, k+1)
— —1=——Rn,k+1) - RIn, k)
F(n, k) F(n, k)

This defines ameaning of the certificate - we need to verify the above identity.
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m Example

Prove

()= s ()

First we define the summand as a Mathematica function

FIn_, k_1:= (k (m+n) Bi nom al [n, k] Bi nom al [m k1) /
(mnBinomal [n+m m])

The problem is reduced to proving

k()3
Z m+n -
= (")

or

This can be a so written as

Sn) = Z Fink =1

k=—c0
Check asinglevalue (1)
| F[1, 1]
| 1
Therefore, if we can show that
Sn+1) -SN=0 ®)

then by induction we prove that S(n) = 1 for al n. Thus, we prove the original identity. By defini-
tion of S(n), we have

n+1 n

Sn+1) - S = Y Fn+1, k- Y F(n, k) =

k=1 k=1
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[oe] [0e]

D Fn+1,k - Y Fn k= i [F(n+1, k)~ F(n, K]

k=—00 k=—00 k=—00

Note, F(n+ 1, n+ 1) isnot zero

|F[n+1, n+1j
| ((L+m+n) Binomal [m 1+n])/ (mBinom al [1+m+n, m])

and therefore, we will have to make an additional step. We will take care of this at the end. Let us
assumethat F(n+ 1, k) — F(n, K) is Gosper-summable, i. e. exist function G such that
Fin+1, k) — F(n, k) =G(n, k+1) — G(n, k)

and

[o¢]

D IFM+1, Kk -Fm, k1= > [Gn, k+1) - G, k)] =0 6)

k=—00 k=—o00

since the right hand side is tel escoping under the additional assumptions

lim G(n, x) =0
X—=00
lim G(n, x) =0

X—>—o00

We proceeed with Gosper's algorithm

| sk _1:=F[n+1, k] -F[n, k]

s[k +1] _
// Functi onExpand // Fact or
s [K]
| ((k-m (-1+k-n) (km+n+kn-mn)) / (k (1+k) (-m+km+kn-mn))

Since it's ahypergeometric term, we find atriple (pk, Ok, k) such that
S+l _ Pk+1 Ok+1
S Pk Tk+1

plk_]1:=-m+km+kn-mn
glk_]:=(k-m-1) (k-n-2)
rik_1:=k (k-1)
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Here is adifference equation for fy

Pk = Ok+1 fi =k fies
| prk] =q[k+1] f [K] - r[k]f[k-1]
| -m-mn+k (m+n) = - (-1+k)kf[-1+k]+(k-m (-1+k-n)f[k]
The solution is obvious f, = -1

| Col l ect [p[k] -q[k +21]f[k] +r[k]f[k-1]/. f[k_ ]:+»-1, k, Factor]

| 0

Thus,

We need to show that G(n, +c0) = 0.

| G[n, x] // FunctionExpand // Ful | Si nplify

- (mn (-1 +x) Gamma[m)? Gamma[n]?) /
(Gamma[1+m+n] Ganma[l+m-x] Gamma([2 +n-x] Ganma[x]?)

Series[%22, {X, Infinity, 0}]

mn (mn Ganma [m]2 Gamma [n]?

Sinfmr-nx] Sin[nmx-nXx]

1
X

‘ 7@ Ganmma [l + m+n]

To find a certificate we do the following



15-355: Modern Computer Algebra

G[n, k]
F[n, k]

// Functi onExpand // Sinplify

(-1+k) k
(-1+k-n) (m+n)

(-1+Kk) Kk
" (=1+k-n) (m+n)

Verification of the proof by using the certificate

FIn+1, k] F[n, k+1] R[n, k+1] .
_ _1- -R[n, k1| 7/ Functi onExpand 7/
F[n, k] F[n, k]
Ful I Sinplify
0

We noted at the beginning of thisexamplethat F(n+ 1, n+ 1) # 0, soformally

n
SN+1)-SM =F(M+1, n+1)+ Y (Fn+1, k) - F(n, k)
k=1
=Fn+1, n+1)-G(n, 1)+Gn, n+1)
-G[n, 11 +F[n+1, n+1] + Functi onExpand[ G[n, k]]1 /. k->n+1

1+n Ganma [m]?) /
-m-mn+m(1l+n)+n (1+n)) Ganmma[m-n] Ganma [l +m+n])

Ful I Si mplify[%]

‘ 1+m+ yBinomial [m 1+n]) / (mBinomal [1+m+n, m]) -
|o
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m Do-it-your self
1) Prove

Z”: n+2 ( )(2k+1)2n_2k_1:(2n+1)
2k+1 k n
2) Show that the WZ algorithm fails on this identity:

a0 -

I References

[1] M. Petkovsek, H. Wilf, D. Zeilberger, A = B, Algorithms and Computations in Mathematics,
AK Peters, 1996.

[2] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, 2nd Ed., Addison-Wesley,
1994,

[3] W. Koepf, Hypergeometric Summation. An Algorithmic Approach to Summation and Special
Function Identities, Vieweg, Braunschweig/Wiesbaden, 1998.



