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Sister Celine's Algorithm

"The interesting problem of the pure recurrence relation for 

hypergeometric polynomials received probably its first systematic attack 

at the hands of Sister Mary Celine Fasenmyer" - E.D.Rainville [1]

Mary Celine Fasenmyer 

Sister Celine grew up in Pennsylvania’s oil country and displayed mathematical talent in high 
school. For ten years after her graduation she taught and studied at Mercyhurst College in Erie, 
where she joined the Sisters of Mercy. She pursued her mathematical studies in Pittsburgh and the 
University of Michigan, obtaining her doctorate in 1946.

After getting her Ph.D., Sister Celine published two papers which expanded on her doctorate work. 
These papers would be further elaborated by Doron Zeilberger and Herbert Wilf into “WZ theory”, 
which allowed computerized proof of many combinatorial identities. After this, she returned to 
Mercyhurst to teach and did not engage in further research.

http://en.wikipedia.org/wiki/Mary_Celine_Fasenmyer

Introduction

The idea of Celine's algorithm is to search for a recurrence equation for the summand FHn, kL
SHnL = â

k=0

n

FHn, kL
We will outline major steps of the algorithm on the following example.
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(1)SHnL = â
k=0

n

2k n
k

Let us assume (!) that the summand FHn, kL = 2k n
k

 satisfies the following recurrence equation

(2)aHnL FHn, kL + bHnL FHn + 1, kL + cHnL FHn, k + 1L + dHnL FHn + 1, k + 1L = 0

where a, b, c, d are unknown polynomials that depend only on n. We convert (2) to a polynomial 
form

aHnL 2k n

k
+ bHnL 2k n + 1

k
+ cHnL 2k+1 n

k + 1
+ dHnL 2k+1 n + 1

k + 1
= 0

aHnL + bHnL
n + 1

k

n

k

+ 2 cHnL
n

k + 1

n

k

+ 2 dHnL
n + 1

k + 1

n

k

= 0

by converting binomials into factorials and them simplifying the ratio of factorials. For example,

n + 1

k

n

k

=
Hn + 1L !

Hn + 1 - kL ! k !

Hn - kL ! k !

n !
=

Hn + 1L !

n !

Hn - kL !

Hn + 1 - kL !
=

n + 1

n + 1 - k

Thus, we arrive at

aHnL + bHnL n + 1

n + 1 - k
+ 2 cHnL n - k

k + 1
+ 2 dHnL n + 1

k + 1
= 0

Multiplying it by Hn + 1 - kL Hk + 1L, we obtain the following polynomial in k 

a Hn + 1 - kL Hk + 1L + b Hn + 1L Hk + 1L + 2 c Hn - kL Hn + 1 - kL + 2 d Hn + 1L Hn + 1 - kL = 0

Since the equation must be valid for all k, we equal coefficients by k to zero. This will give us a 
system of algebraic equation wrt unknown a, b, c and d:

n2 H2 c + 2 dL + n Ha + b + 2 c + 4 dL + a + b + 2 d = 0

n Ha + b - 4 c - 2 dL + b - 2 c - 2 d = 0

a - 2 c = 0

This system always has a solution. (why-?). Solving it, yields

b = 0, a = 2 c, d = -c

Substituting this back to (2), we get an equation for the summand
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(3)2 FHn, kL + FHn, k + 1L - FHn + 1, k + 1L = 0

This is a two-variables recurrence equation. It does not look simple for solving...but won't solve it. 
We formally sum it wrt k to get a recurrence for the original sum SHnL. Due to the following formal 
manipulations

â
k=0

n

FHn, kL = SHnL
â
k=0

n

FHn, k + 1L = â
k=1

n+1

FHn, kL =

-FHn, 0L + FHn, n + 1L + â
k=0

n

FHn, kL = SHnL - FHn, 0L + FHn, n + 1L
â
k=0

n

FHn + 1, k + 1L = -FHn + 1, 0L + â
k=0

n+1

FHn + 1, kL = SHn + 1L - FHn + 1, 0L
we get

â
k=0

n @2 FHn, kL + FHn, k + 1L - FHn + 1, k + 1LD =

2 SHnL + SHnL - FHn, 0L + FHn, n + 1L - SHn + 1L + FHn + 1, 0L
where the boundary cases FHn, 0L, FHn, n + 1L and FHn + 1, 0L  are computed by

FHn, kL = 2k n
k

Thus,

FHn, 0L = 1

FHn, n + 1L = 0

FHn + 1, 0L = 1

It follows, that formally summing up the recurrence equation (3), we derive a recurrence equation 
for the sum SHnL:

3 SHnL - SHn + 1L = 0

SH0L = 1

This can be easily solved by iteration, 

SHnL = 3n = â
k=0

n

2k n
k
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Algorithm

The algorithm was developed by Sister Mary Celine Fasenmyer in her Ph.D. thesis in 1945 
(see [1, p. 233] or [2, 3]). Given

SHnL = â
k=0

n

FHn, kL
We search for the recurrence equation for the summand FHn, kL in the form

(4)â
i=0

I â
j=0

J

ai, jHnL FHn + j, k + iL
FHn, kL = 0

The important assumptions of this method are

a) the summand is hypergeometric term in n and k is rational

FHn + 1, kL
FHn, kL Î QHnL and

FHn, k + 1L
FHn, kL Î QHkL

A geometric series is a series a0 + a1 + ... in which the ratio ak+1

ak
of two consecutive terms is con-

stant for all k. In contrast, a hypergeometric series is a series in which the ratio of consective terms 
is not constant, but rather a rational function. It says that the summand is double hypergeometric if 
the above two conditions are met wrt to two parameters.

b) coefficients a, b, c, and d are free of the summation index  n

The crucial step of this method is that system for coefficients a, b, c, and d has a nontrivial solution. 
This will be always a case if the number of variables exceeds the number of equations. This seems 
is not hard to prove. Recall that we require the summand to be double hypergeometric, in other 
words, each ratio in the above system is a rational function with respect to n and k. Then, when we 
equating to zero coefficients by k to zero and see that the system has too few equations, we increase 
the order of a difference equation. 

Increasing I  and J  in (3) will increase the number of equations as well as the number of unknowns 
ai, jHnL . The number of unknowns grows as OHI * J L, however the number of equations can grow at 

the same (or faster) rate. So we must restrict the class of summands. 

Definition. 

We say that FHn, kL is a proper hypergeometric term if it can be written as

FHn, kL = PHn, kL Ûj=1
G Ia j n + b j k + c jM!

Ûj=1
H Iu j n + v j k + w jM!

xk
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where P is a polynomial, and all coefficients a j, b j, u j, v j are integers.

Observe,

Hn + 1L!

n!
= OHnL

Hn + 2L!

n!
= OIn2M

Hn + pL!

n!
= OHnpL

Thus, if the summand is a proper hypergeometric term then the number of equations defined by a 
ratio

FHn + j, k + iL
FHn, kL

will grow as OHI + J L. This guarantees that the number of unknowns will eventually exceed the 
number of equations.

Drawbacks.

The question remains, what is maximal order of the recurrence (3)? There are some estimates, but 
all of them are impractical. The algorithm that it does not necessarily produces a difference equa-
tion of the lowest order.

Mathematica session

In this section we provide all steps of Celine's algorithm the way they can be done in Mathematica. 
As an example, we evaluate 

SHnL = â
k=0

n

2k n
k

First we define the summand as a Mathematica function

F@n_, k_D := 2k Binomial@n, kD

Then we assume that the summand satisfies the recurrence equation of the first order

aHnL FHn, kL + bHnL FHn + 1, kL + cHnL FHn, k + 1L + dHnL FHn + 1, k + 1L = 0
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a + b
F@n + 1, kD

F@n, kD + c
F@n, k + 1D

F@n, kD + d
F@n + 1, k + 1D

F@n, kD

We call FunctionExpand to cancel binomial coefficients

FunctionExpand@%D

In this input, we convert the rational expression to a polynomial form

Numerator@Together@%DD

Next, we take coefficients by k and set them to 0:

CoefficientList@%, kD

eq = Map@Equal@ð, 0D &, %D

As in a style of functional programming, we map a function over the list

Map@f, 8a, b, c<D

Same, for a multivariate function

Map@f@ð, yD &, 8a, b, c<D

Here, Function[body] or body & is a pure function with a formal parameter #. 

The system of linear equations is efficiently solved by 

Solve@eq, 8a, b, c, d<D

Thus, we found the recurrence for the summand

Clear@FD; a F@n, kD + b F@n + 1, kD + c F@n, k + 1D + d F@n + 1, k + 1D �.

:b ® 0, c ®
a

2
, d ® -

a

2
>

which is, after canceling a parameter a,

FHn + 1, k + 1L - FHn, k + 1L - 2 FHn, kL = 0

Summing it up wrt k, we arrive at 

SHn + 1L = 3 SHnL
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which is solved by

RSolve@8S@n + 1D � 3 S@nD, S@0D � 1<, S@nD, nD

The Euler Gamma Function

Almost always when you deal with binomial coefficients and/or factorials, Mathematica may 
replace then by the Gamma function

n! = GHn + 1L = à
0

¥

xn ã-x â x

This functiion is an analytic continuation of n! into a complex plane. By means of G-function we 
can define a fractional factorial

1

2
! =

Π

2

Here are two functional properties of the function:

GHz + 1L = z GHzL
GHzL GH1 - zL =

Π

sinHΠ zL , 0 < z < 1

Read more on the Gamma function at http://mathworld.wolfram.com/GammaFunction.html

Another Example

SHnL = â
k=0

n

k
n
k

F@n_, k_D := k Binomial@n, kD

Then we assume that the summand satisfies the recurrence equation of the first order

aHnL FHn, kL + bHnL FHn + 1, kL + cHnL FHn, k + 1L + dHnL FHn + 1, k + 1L = 0

a + b
F@n + 1, kD

F@n, kD + c
F@n, k + 1D

F@n, kD + d
F@n + 1, k + 1D

F@n, kD
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Numerator@Together@FunctionExpand@%DDD

CoefficientList@%, kD

eq = Map@Equal@ð, 0D &, %D

Solve@eq, 8a, b, c, d<D

Clear@FD; a F@n, kD + b F@n + 1, kD + c F@n, k + 1D + d F@n + 1, k + 1D �.

%@@1DD

Thus, we found the following recurrence for the summand

n FHn + 1, k + 1L - Hn + 1L FHn, k + 1L - Hn + 1L FHn, kL = 0

Summing it up wrt k and using these formal manipulations

â
k=0

n

FHn, kL = SHnL
â
k=0

n

FHn, k + 1L = â
k=1

n+1

FHn, kL = -FHn, 0L + FHn, n + 1L + â
k=0

n

FHn, kL = SHnL - FHn, 0L
â
k=0

n

FHn + 1, k + 1L = -FHn + 1, 0L + â
k=0

n+1

FHn + 1, kL = SHn + 1L - FHn + 1, 0L
we arrive at 

n HSHn + 1L - FHn + 1, 0LL - Hn + 1L HSHnL - FHn, 0LL - Hn + 1L SHnL = 0

or

n SHn + 1L - Hn + 1L SHnL - Hn + 1L SHnL = 0

which is solved by

RSolve@8n S@n + 1D � 2 Hn + 1L S@nD, S@0D � 0<, S@nD, nD
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