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I Introduction to Summation

Exercise 1.2.6.63 in abook by D. Knuth "The art of computer programming” Vol. 1: Fundamental
Algorithms, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont, 1969 (1st or
2nd editions) says

develop computer programs for simplifying sums that
involve binomial coefficients
In 1997's 3rd edition, that exercise is replaced by a pure technical problem.

The summation problem
S=>fmnk
k

consistsin finding aclosed formfor S. By a closed form we mean afinite combination of
elementary functions and constants.

Congider afinite sum, where the summand f (k) isfreeof n

s(n) = f(1)+f(2)+...+f(n)=Zf(k)

k=1
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Shifting n by 1, we observe that

Sn+1)=f()+..+ f(n)+ f(n+1):2f(k) + f(n+1)
k=1

Thus
Sn+1) =8N+ f(n+1)
S1) = (1)

and the problem of summation is reduced to solving arecurrence equation of the first order. The
success of this approach mainly depends on ability to solve recurrence equations of different types
and orders. As an example, the following sum

S = >k
k=1

is reduced to solving this recurrence equation
Sn+1)-SN)=n+1
SH=1

If the summand is afunction of n

s =) f(n, K

k=0
the above procedure does not lead so easily to a difference equation.

Before we proceed with summation algorithms, we need to review elementary techniques of
solving difference equations.

I Recurrence relations
Definition. If n-th term of a sequence can be expressed as a function of previous terms
Xn = F(Xn-ks Xn—k+1, «s Xn-1) + On, N>K

then this equation is called ak-th order recurrence relation. The values x3, Xo, ..., Xk must be
explicitely given. They are called initial conditions. The function F in the definition above may
depend upon al or some previousterms. If g, = 0, the recurrence equation is called homogeneous.
Otherwisg, it's called non-homogeneous.

In this lecture we will outline some methods of solving recurrencerelations (later on we will study
the most general method of hypergeometric summation.) By solving we mean to find an explicit
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form of x, asafunction of nthat isfree of previousterms except ones given in initial conditions.
For example, the Towers of Hanoi recurrencerelation

Xqn = 2%q-1 +1
X1 =1

has the following solution
Xn = 2n - 1

Recurrences are classified by the way in which terms are combined. Hereis alist of some of the
recurrences

m First Order
Linear ay=2%ap1 + 1
Non-Linear ah=a2,+z2

m Second Order

Linear n = ap-1 + An-2
Non-Linear Ap = An_1 * An_2

m Higher Order
anh = @p-1tan-2+an-3
dy = pap-1td1ap-2+... + Ap-1Qo

m Divide and Conquer
Binary Search an= ap2+1
Merge Sort ah=2app+n-1
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Solving First Order Recurrences

This class of recurrences can be solved by iteration: namely apply the recurrenceto itself until only
aninitial valueleft.

m Examplel

Consider the following recurrence

ah =A*an 1

a=1
It iteratesto

an=Ax8y1 =A%%ap o =A%xa,3=...= A" lxg =21

m Towersof Hanoi
This is a non-homogeneous equation
an=2%ap1 +1
a=1
Shifting n, we obtain the following set of equations
an=2%ap1 +1
A-1=2%ap o +1
8 2=2%a3+1

=2xa +1
that can be rewritten as
an=2%ap1 +1
281 =4* a,_o + 2
4a, ,=8xan,3+4

2" 2g, = 21y @y + 2M2
Next, we sum up the above equations to get

an=2"txag +(1+2+4+..+2"2)
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or (sincea; = 1)
ap=20142m200-1 4 424 1=2"-1

In Mathematica

| RSol ve[{a[n] ==2a[n-1] + 1, a[l] =1}, a[n], n]

| {{a[jn] - -1+2"}}

m Example2

8 =2Aap1+ N
=1
We have
8h=2Aap1+n

Aan1=2A%a,» + A(n—1)
A2, 2 =2%a,3 +1%(n-2)

A3, = A 1ay + A2 2
Summing them up, yields
an=A"ta+n+AN-1)+A3(N-2)+ ..+ A"22

Hence,
n-2
an=A""+ > A (n-k
k=0
n
a, = A1, Z}Ln—k K
k=2

In Mathematica

| RSol ve[{a[n] ==axa[n-1] + n, a[l] =1}, a[n], n]
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Solving Second Order Recurrences

This class of recurrences can be solved using a characteristic equation - a method of solving linear
recurrences with constant coefficients (coefficients by ay are free of n).

m Fibonacci numbers

The Fibonacci sequence is defined by

Ay = ap-1 + a2
1)
=0 a=1
Our goal isto find a closed form representation for a,. It's easy to see that we cannot find it by
iteration, since unwinding recursive calls will lead to a binary tree. But what if we look at the ratio
of two consecutive terms? The ratio could be any function, though the simplest one is a constant

an

an-1
where A isto be determined. To find A, we divide (1) by a,_;
8n _ &1 q

Since

we obtain apolynomial equation
A2=2+1
which is called a characteristic equation. The equation has two roots

A= 1_\2/3 and)tzz%

Therefore,

(55) e (557

are two solutions to the Fibonacci recurrence. But we have more solutions! Since A" and A," are
solutions, then so istheir linear combination

A, =Cp A" + CoxA"

where ¢; and ¢, are arbitrary constants. Such solution is called a general solution. How would you
prove this result? By substitution this into the original equation

CLsA" + Cox A" — (Cl * }Lln_l + Co Azn_l) - (C]_ * Aln—Z + Co * Azn_z)
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and collecting termswrt ¢; and ¢,
Crx (A" =M= ")+ g (A" — AT - AP
Thisis zero, since A; and A, are the roots of the charcateristic equation.
Back to the general solution
A, =Cy A" + CoxA"
where coefficients ¢, and ¢, are unknown. How do we find ¢; and c,? From initial conditions
=0 a=1

This leads to a system of two equations

ag=C1 A% + A% =0

a;=CrsAt + Gyl =1

or

Cl__«/_— andc, = \/—%
Hence,
anz—% *(l_f)n+%*(%)n

isthe solution to (1).

m Example3
Solve this recurrence
an = 3ap_1+4an2

a =0 a=1

Assuming the solution in the form
an = A"

we get the following characteristic equation

A2-31-4=0

that has two roots
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Ar=-1and A, =4
Thus, the general solutionis
an = Cl*(—l)n + Cox4"

Wefind ¢; and ¢, frominitial conditions. Thisyieldsthe following system

{ ci+c =0
-Cci+4c=1
Itssolution is
1 1
CiL = —g, C = g

Finally, the solution to the original recurrenceis

_ 1 o awn_ 1 4 n
an = 5>x<( 1 +5>x<4

m Multipleroots

What would be the solution of the recurrenceif all (or few) roots of the characteristic equation are
the same? Consider the following example.

=28 1- a2

=1 a =2
The characteristic equation
A2-221+1=0
has two identical roots
Ap=A=1
Thefirst solution is
1"

But what is the second solution? To get a notion of the second solution we consider a new equation
bh=(2+€)br1 —(L+€)bno
bo=1, by=2

It'seasy to seethat if € — O then the sequence by, approaches a,,. The characteristic equation for b,
sequenceis

P-Q2+e)A+(1+e)=0

It hastwo roots
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AM=1 A=1+¢
Therefore, agenera solutionis
bh=Ci 1"+ Cox(1+¢€)"
where ¢; and ¢, are arbitrary. Let us find them from theinitial conditions
bp=ci+c=1
bi=ci+cx(1l+e) =2

It follows,

ci=1-—, o=~
Thus,
1 1
bn=(l——)+— x«(1+e)"
€ €

Now, consider ageneral solution whene - 0

_  (1+e"-1 S ("+nxexl™l+ 41
ap=limb,=1+lim———— =1+Ilim =1+n
-0 -0 € -0 €

Thisis the second solution for a, sequence. Then the general solution for a,is
a,=1+n

In Mathematica

| RSol ve[{a[n] ==2a[n-1] -a[n-2], a[0] =1, af[l] =2}, a[n], n]

| {{a[n] ->1+n}}

m Moreon multiple roots
We have showed that if the characteristic equation has a multiple root A then both
a, = A" and a, =nA"
are solutions. We prove this for the second order recurrence eguation
ah = a@x @1+ B* A2
The characteristic equation

A2 —ad-8=0
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has two identical roots

a—\a’+4p a+\a’+4p

if and only if B8 = —%2. It followsA = 52” To prove that
a,=nA"
is the solution we substitute this into the original recurrence
nA" = a(n-A" + B(n-2)A"2

Divide this by A"-2

nA2—a-1)A-B8(-2) =0
and then collect terms with respect to n

n(A>-ad- B)+ad +28 =0
Thefirst term is zero because A is the roots of the characteristic equation. The second term is zero
because = —“742 and A = %
Theorem. Let A bearoot of multiplicity p of the characteristic equation. Then

A", nA", n?A", L, nPriAn
are all solutions to the recurrence.
Example. Find agenera solution
anh =381~ 3 2+an3
The characteristic equation hasaroot A = 1 of multiplicity 3. Therefore,
a, =C +CoN + C3n?

isasolution of this recurrence equation.
Exer cise. Solve the recurrence

an —S5a-1+ 73y 2-33,3=0

=1 a=2a=3

m Non-homogeneous equations

Theorem. A recurrence of the form

Xp + C1 Xn_1 + ... + Ck Xn_k = b" P(n)
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where all ¢, and b are constants and P(n) is a polynomial of the order d can be transformed into
the characteristic equation

(M4 t+ +o)r-b*t=0

Generating Functions
They provide an alternative (and more general) approach to solving recurrence equations.

Definition. A generating function f (x) isa formal power series

f(x) = Zak XK
k=0

whose coefficients give the sequence ag, a;, ...

As an example, recall ageometric series
) 1
1+ X+X+.. = —
1-x

Theinfinite sequencel, 1, 1, ... hasagenerating function 1—fx Consider

1

1-x2

1+ X +x+.. =

Theinfinite sequence 1, O, 1, O, ... hasagenerating function 1_—1)(2

Generating functions transform discrete math problems about sequences into problems about
functions. The advantage of this approach that we can carry out manipulations on sequences by
performing algebraic operations on their associated generating functions.

m Example4
We are going to derive a generating function for the following sequence
ah — 381+ 28,2=0
=0 a=1
First, we define

f(X)=ag+a; X + a2x2+a3x3+a4x4+...:2akxk
k=0
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Next, we write seriesfor —3 x f(x) and 2 X2 f (X):

—3xf(x)=-3ay x—3a;X* -3 x-3azxX*+...= —ZSak_lxk
k=1

2x2 f(X)=2ap X +2a, X + 2a2x4+...:Z:2ak_2xk
k=2

Add them up
fX)-3xFX)+2x° f(X) =

iak X< — isak_l X< + iZak_z X< =
k=0 =1 k=2

80+ X~ 380X+ ) (8~ 381 +2a2) X =
k=2

a+ay X—3ay X
Furthermore, in view of initial conditions,
fX)—3xF(X)+2x° f(X) = x
Thus,

1 1

f(x) = 5 = -
1-3x+2x 1-2x 1-Xx

How can this be used for solving recurrence equations? By means of a geometric series

1
1+ X+X+.. = —
1-

[

1+2X+22%%+... =
1-2X

How can this be used for solving recurrence equations? By means of a geometric series
1 1
1-2x _:( -
(L+2x+22¢+.)—(1+ x+X+..) =
R-Dx+ (Z-1)x + ...

The coefficient of ay is 2¢ — 1. In Mathematica



