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Introduction to Summation

Exercise 1.2.6.63 in a book by D. Knuth "The art of computer programming" Vol. 1: Fundamental 
Algorithms, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont, 1969 (1st or 
2nd editions) says

develop computer programs for simplifying sums that 

involve binomial coefficients

In 1997's 3rd edition, that exercise is replaced by a pure technical problem.

The summation problem 

S = â
k

f Hn, kL
consists in finding a closed form for S. By a closed form we mean a finite combination of 
elementary functions and constants.

Consider a finite sum, where the summand f HkL is free of n

SHnL = f H1L + f H2L + ... + f HnL = â
k=1

n

f HkL



Shifting n by 1, we observe that

SHn + 1L = f H1L + ... + f HnL + f Hn + 1L = â
k=1

n

f HkL + f Hn + 1L
Thus

SHn + 1L = SHnL + f Hn + 1L
SH1L = f H1L

and the problem of summation is reduced to solving a recurrence equation of the first order. The 
success of this approach mainly depends on ability to solve recurrence equations of different types 
and orders. As an example, the following sum

SHnL = â
k=1

n

k

is reduced to solving this recurrence equation

SHn + 1L - SHnL = n + 1

SH1L = 1

If the summand is a function of n

SHnL = â
k=0

n

f Hn, kL
the above procedure does not lead so easily to a difference equation. 

Before we proceed with summation algorithms, we need to review elementary techniques of 
solving difference equations.

Recurrence relations
Definition. If n-th term of a sequence can be expressed as a function of previous terms

xn = FHxn-k , xn-k+1, ..., xn-1L + gn, n > k

then this equation is called a k-th order recurrence relation. The values x1, x2, ..., xk  must be 
explicitely given. They are called initial conditions. The function F in the definition above may 
depend upon all or some previous terms. If gn = 0, the recurrence equation is called homogeneous. 

Otherwise, it's called non-homogeneous.

In this lecture we will outline some methods of solving recurrence relations (later on we will study 
the most general method of hypergeometric summation.) By solving we mean to find an explicit 
form of xn as a function of n that is free of previous terms except ones given in initial conditions. 
For example, the Towers of Hanoi recurrence relation
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In this lecture we will outline some methods of solving recurrence relations (later on we will study 
the most general method of hypergeometric summation.) By solving we mean to find an explicit 
form of xn as a function of n that is free of previous terms except ones given in initial conditions. 
For example, the Towers of Hanoi recurrence relation

xn = 2 xn-1 + 1

x1 = 1

has the following solution

xn = 2n - 1

Recurrences are classified by the way in which terms are combined. Here is a list of some of the 
recurrences

à First Order

Linear                                                   an = 2 * an-1 + 1

Non-Linear                                           an = an-1
2 + z 

à Second Order

Linear                                                   an = an-1 + an-2

Non-Linear                                           an = an-1 * an-2

à Higher Order

an = an-1 + an-2 + an-3

an = a0 an-1 + a1 an-2 + ... + an-1 a0

à Divide and Conquer

Binary Search                                                  an = an�2 + 1

Merge Sort                                                  an = 2 an�2 + n - 1
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Solving First Order Recurrences

This class of recurrences can be solved by iteration: namely apply the recurrence to itself until only 
an initial value left.

à Example 1

Consider the following recurrence

an = Λ * an-1

a1 = 1

It iterates to                                                

an = Λ * an-1 =Λ2 * an-2 =Λ3 * an-3 =. .. = Λn-1 * a1 = Λn-1

à Towers of Hanoi

This is a non-homogeneous equation

an = 2 * an-1 + 1

a1 = 1

Shifting n, we obtain the following set of equations                                    

   an = 2 * an-1 + 1

an-1 = 2 * an-2 + 1

an-2 = 2 * an-3 + 1

...

a2 = 2 * a1 + 1

that can be rewritten as                                           

an = 2 * an-1 + 1

2 an-1 = 4 * an-2 + 2

4 an-2 = 8 * an-3 + 4

...

2n-2a2 = 2n-1 * a1 + 2n-2

Next, we sum up the above equations to get                                

an = 2n-1 * a1 + I1 + 2 + 4 + ... + 2n-2M
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or  (since a1 = 1)                               

an = 2n-1 + 2n-2 + 2n-1 + ... + 2 + 1 = 2n - 1

In Mathematica

RSolve@8a@nD � 2 a@n - 1D + 1, a@1D � 1<, a@nD, nD

88a@nD ® -1 + 2n<<

à Example 2

an = Λ an-1 + n

a1 = 1

We have                                                

an = Λ an-1 + n

Λ an-1 = Λ2 an-2 + ΛHn - 1)

Λ2an-2 = Λ3 an-3 + Λ2H n - 2)

...

Λn-2a2 = Λn-1 a1 + Λn-2 2

Summing them up, yields                                              

an = Λn-1 a1 + n + ΛHn - 1M + Λ2H n - 2L + ...+ Λn-2 2

Hence,

an = Λn-1 + â
k=0

n-2

Λk Hn - kL
an = Λn-1 + â

k=2

n

Λn-k k

In Mathematica

RSolve@8a@nD � Λ a@n - 1D + n, a@1D � 1<, a@nD, nD

::a@nD ® -
1

Λ

-1+n

+ n
1

Λ

-1+n

- n
1

Λ

n

- Λ Λn � H-1 + ΛL2>>
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Solving Second Order Recurrences

This class of recurrences can be solved using a characteristic equation - a method of solving linear 
recurrences with constant coefficients (coefficients by ak  are free of n). 

à Fibonacci numbers

The Fibonacci sequence is defined by

(1)
an = an-1 + an-2

a0 = 0, a1 = 1

Our goal is to find a closed form representation for an. It’s easy to see that we cannot find it by 
iteration, since unwinding recursive calls will lead to a binary tree. But what if we look at the ratio 
of two consecutive terms? The ratio could be any function, though the simplest one is a constant

an

an-1

= Λ

where Λ is to be determined. To find Λ, we divide (1) by an-1

an

an-2
= an-1

an-2
+ 1

Since
an

an-2
= an

an-1

an-1

an-2
= Λ2

we obtain  apolynomial equation 

Λ2 = Λ + 1 

which is called a characteristic equation. The equation has two roots

Λ1 = 1- 5

2
 and Λ2 = 1+ 5

2

Therefore, 

J 1- 5

2
Nn

  and   J 1+ 5

2
Nn

are two solutions to the Fibonacci recurrence. But we have more solutions! Since Λ1
n and Λ2

n are 
solutions, then so is their linear combination

an = c1 * Λ1
n + c2 * Λ2

n

where c1 and c2 are arbitrary constants. Such solution is called a general solution. How would you 
prove this result? By substitution this into the original equation

c1 * Λ1
n + c2 * Λ2

n - Ic1 * Λ1
n-1 + c2 * Λ2

n-1M - Ic1 * Λ1
n-2 + c2 * Λ2

n-2M
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and collecting terms wrt c1 and c2

c1 * IΛ1
n - Λ1

n-1 - Λ1
n-2M + c2 * IΛ2

n - Λ2
n-1 - Λ2

n-2M
This is zero, since Λ1 and Λ2 are the roots of the charcateristic equation.

Back to the general solution

an = c1 * Λ1
n + c2 * Λ2

n

where coefficients c1 and c2 are unknown. How do we find c1 and c2? From initial conditions

a0 = 0, a1 = 1

This leads to a system of two equations

a0 = c1 * Λ1
0 + c2 * Λ2

0 = 0

a1 = c1 * Λ1
1 + c2 * Λ2

1 = 1

or

c1 + c2 = 0

c1 * 1- 5

2
+ c2 * 1+ 5

2
= 1

that can be easily solved by elimination. We obtain

c1 = - 1

5
 and c2 = 1

5

Hence,

an = - 1

5
* J 1- 5

2
Nn

+ 1

5
* J 1+ 5

2
Nn

is the solution to (1).

à Example 3

Solve this recurrence

an = 3 an-1 + 4 an-2

a0 = 0, a1 = 1

Assuming the solution in the form

an = Λn

we get the following characteristic equation

Λ2 - 3 Λ - 4 = 0

that has two roots
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Λ1 = -1 and Λ2 = 4

Thus, the general solution is

an = c1 * H-1Ln + c2 * 4n

We find c1 and c2 from initial conditions. This yields the following system

; c1 + c2 = 0

-c1 + 4 c2 = 1

Its solution is 

c1 = -
1

5
, c2 =

1

5

Finally, the solution to the original recurrence is

an = - 1

5
* H-1Ln + 1

5
* 4n

à Multiple roots

What would be the solution of the recurrence if all (or few) roots of the characteristic equation are 
the same? Consider the following example. 

an = 2 an-1 - an-2

a0 = 1, a1 = 2

The characteristic equation

Λ2 - 2 Λ + 1 = 0

has two identical roots

Λ1 = Λ2 = 1

The first solution is

1n

But what is the second solution? To get a notion of the second solution we consider a new equation

bn = H2 + ΕL bn-1 - H1 + ΕL bn-2

b0 = 1, b1 = 2

It's easy to see that if Ε ® 0 then the sequence bn approaches an. The characteristic equation for bn 
sequence is

Λ2 - H2 + ΕL Λ + H1 + ΕL = 0

It has two  roots

8 lecture01.cdf



Λ1 = 1, Λ2 = 1 + Ε

Therefore, a general solution is

bn = c1 * 1n + c2 * H1 + ΕLn

where c1 and c2 are arbitrary. Let us find them from the initial conditions

b0 = c1 + c2 = 1

b1 = c1 + c2 * H1 + ΕL = 2

It follows,

c1 = 1 -
1

Ε
, c2 =

1

Ε

Thus,

bn = 1 -
1

Ε
+

1

Ε
* H1 + ΕLn

Now, consider a general solution when Ε ® 0

an = lim
Ε®0

bn = 1 + lim
Ε®0

H1 + ΕLn - 1

Ε
= 1 + lim

Ε®0

I1n + n * Ε * 1n-1 + ... + ΕnM - 1

Ε
= 1 + n

This is the second solution for an sequence. Then the general solution for an is

an = 1 + n

In Mathematica

RSolve@8a@nD � 2 a@n - 1D - a@n - 2D, a@0D � 1, a@1D � 2<, a@nD, nD

88a@nD ® 1 + n<<

à More on multiple roots

We have showed that if the characteristic equation has a multiple root Λ then both

an = Λn and an = n Λn

are solutions. We prove this for the second order recurrence equation 

an = Α * an-1 + Β * an-2

The characteristic equation

Λ2 - Α Λ - Β = 0
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has two identical roots 

Λ1 =
Α - Α2 + 4 Β

2
, Λ2 =

Α + Α2 + 4 Β

2

if and only if Β = - Α2

4
. It follows Λ = Α

2
. To prove that

an = n Λn

is the solution we substitute this into the original recurrence

n Λn = Α Hn - 1L Λn-1 + Β Hn - 2L Λn-2

Divide this by Λn-2 

n Λ2 - Α Hn - 1L Λ - Β Hn - 2L = 0

and then collect terms with respect to n

n IΛ2 - Α Λ - ΒM + Α Λ + 2 Β = 0

The first term is zero because Λ is the roots of the characteristic equation. The second term is zero 

because Β = - Α2

4
 and  Λ = Α

2
.

Theorem. Let Λ be a root of multiplicity p of the characteristic equation. Then 

Λn, n Λn, n2 Λn, ..., np-1 Λn

are all solutions to the recurrence.

Example. Find a general solution 

an = 3 an-1 - 3 an-2 + an-3

The characteristic equation has a root Λ = 1 of multiplicity 3. Therefore, 

an = c1 + c2 n + c3 n2

is a solution of this recurrence equation.

Exercise. Solve the recurrence

an - 5 an-1 + 7 an-2 - 3 an-3 = 0

a0 = 1, a1 = 2, a2 = 3

à Non-homogeneous equations

Theorem. A recurrence of the form 

xn + c1 xn-1 + ... + ck xn-k = bn PHnL
where all ck  and b are constants and PHnL is a polynomial of the order d can be transformed into 

the characteristic equation 
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where all ck  and b are constants and PHnL is a polynomial of the order d can be transformed into 

the characteristic equation 

Irk + c1 rk-1 + ... + ckM Hr - bLd+1 = 0

Generating Functions

They provide an alternative (and more general) approach to solving recurrence equations.

Definition. A generating function f HxL is a formal power series

f HxL = â
k=0

¥

ak xk

 whose coefficients give the sequence a0, a1, ... 

As an example, recall a geometric series

1 + x + x2 + ... =
1

1 - x

The infinite sequence 1, 1, 1, ... has a generating function 1

1-x
. Consider

1 + x2 + x4 + ... =
1

1 - x2

The infinite sequence 1, 0, 1, 0, ... has a generating function 1

1-x2 . 

Generating functions transform discrete math problems about sequences into problems about 
functions. The advantage of this approach that we can carry out manipulations on sequences by 
performing algebraic operations on their associated generating functions. 

à Example 4

We are going to derive a generating function for the following sequence

an - 3 an-1 + 2 an-2 = 0

a0 = 0, a1 = 1

First, we define

f HxL = a0 + a1 x + a2 x2 + a3 x3 + a4 x4 + ... = â
k=0

¥

ak xk
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Next, we write series for -3 x f HxL and 2 x2 f HxL:
-3 x f HxL = -3 a0 x - 3 a1 x2 - 3 a2 x3 - 3 a3 x4 + ... = -â

k=1

¥

3 ak-1 xk

2 x2 f HxL = 2 a0 x2 + 2 a1 x3 + 2 a2 x4 + ... = â
k=2

¥

2 ak-2 xk

Add them up

f HxL - 3 x f HxL + 2 x2 f HxL =

â
k=0

¥

ak xk - â
k=1

¥

3 ak-1 xk + â
k=2

¥

2 ak-2 xk =

a0 + a1 x - 3 a0 x + â
k=2

¥ Hak - 3 ak-1 + 2 ak-2 L xk =

a0 + a1 x - 3 a0 x

Furthermore, in view of initial conditions,

f HxL - 3 x f HxL + 2 x2 f HxL = x

Thus,

f HxL =
x

1 - 3 x + 2 x 2
=

1

1 - 2 x
-

1

1 - x

How can this be used for solving recurrence equations? By means of a geometric series

1 + x + x2 + ... =
1

1 - x

1 + 2 x + 22 x2 + ... =
1

1 - 2 x

How can this be used for solving recurrence equations? By means of a geometric series

1

1 - 2 x
-

1

1 - x
=

I1 + 2 x + 22 x2 + ...M - I1 + x + x2 + ... M =H2 - 1L x + I22 - 1M x + ...

The coefficient of ak  is 2k - 1. In Mathematica
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