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Presentation plan

Architecture

Expressions

Evaluator

Language + Libraries + Compiler

In WL they are all bundled together…

Pattern Matching



Web-based

repositories
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Distributed 
computing

The kernel and the front end are separate programs, and each can be 
used without of the other. 



TWL - another kind of language,
a knowledge-based language

Create your program in the Wolfram Language

and deploy it everywhere.



Everything is an expression

The basic data objects used in Mathematica are 
called “expressions”. 

Expressions can be classified as either “atomic” 
expressions or “compound” expressions.

The exact internal structure of an expression 
depends on whether the expression is a normal 
expression, a symbol, a number, or a string. 



Expression Structure

A Lisp-like structure – a list ( head arg1 … argn )

Each element can be accessed directly via Part            
(via BFS ordering), head is at index [[0]]

In WL head[arg1, ..., argn], like Plus[2, 2]

f[x_] := x^2;

Function definition is a pattern-based.

f[x_Integer] := x^3;



How expressions are evaluated?
WL is a term rewriting system - whenever an 
expression is entered, it is evaluated by using 
rewrite rules.  

It is necessary to understand the order in 
which the various parts of an expression are 
evaluated by term rewriting.

Transformation rules are defined in WL and 
stored as expressions. 
For example, x=5 is {HoldPattern[x] :> 5}

f[x_,y_]:=x+y is {HoldPattern[f[x_,y_]] :> x + y}



x1 + Sin[x] * f[x, y]^2
Symbol x might have early 
defined values, so those rules are 
stored at OwnValues[x].

The symbols could be heads 
(parents) of some expressions.

Definition for g had no chance to execute.

g[x_]:=x^2;

g = h;

g[5]

So g[5] returns h[5].



x1 + Sin[x] * f[x, y]^2

The parent (head) might have     
early defined rules, 
f[x_, y_] := x + y                                  
so those rules are stored at 
DownValues[f]. This rule is only 
applied when encountered with
arguments downwards.

A function might have 
several rules.

{HoldPattern[f[2]] :> 11, 

HoldPattern[f[x_, y_]] :> x + y, 

HoldPattern[f[x_]] :> x^2}

The rules will be applied in order – more specific rules first!



x1 + Sin[x] * f[x, y]^2

Sometimes you want to 
assigned rules to a symbol only 
if it has a special case. For 
example, x1 = 2. This type of a 
pattern is handled by 
UpValues.

In WL this is  x /: Subscript[x,1] := 2

The rule is NOT assigned to x nor
Subscript.



SubValues: Derivative[1][f][x^2]

We cannot assign a rule to f′ = D[f] , it’s 
not a symbol.

We cannot assign a rule to f′ [Power], it’s 
math wrong. 

This defines neither an OwnValue nor 
a DownValue …

Such rules are applied through SubValues.

Its behavior is not well documented.

DownValues and OwnValues are applied before SubValues. 



f [ g [ x ] ]

UpValues for g are applied before DownValues for f

This does not mean that UpValues for g will be applied 
before DownValues g.

All these are not well documented….

But the picture is even more complicated….



Controlling the evaluation

I should point out that the user can (to some extent) control the 
evaluation process. 

I indicate functions that can be used: 

Hold, HoldAll, HoldAllComplete, HoldComplete, HoldFirst, HoldRest, 
HoldPattern, ReleaseHold, SequenceHold, Evaluate, Unevaluated, 

Inactive, Activate

It should be clear by now that using Values (4) with Hold (10) 
attributes creates a million combinations which is impossible to 
describe and therefore document.



The Evaluation Process
Evaluate symbols with OwnValues

Evaluate the head (with OwnValues)

Evaluate the arguments from left to right.

If the head has Hold-attributes, do not evaluate arguments.

Evaluate the head with arguments. (DownValue)

Evaluate the resulting expression

Apply UpValues for arguments

Apply SubValues

Again, the process is not documented, so I could be wrong…



Pattern Matching

A single blank is used to represent an individual expression, which 
can be any data object.

MatchQ[x^2,_]

MatchQ[x^2,x^_]

MatchQ[x^2,x^_Integer]

MatchQ[x^2,_Power]

MatchQ[x^2,_^_]

MatchQ[x^2,_^2]



Alternative Pattern Matching

A | specifies alternative patterns 

f[a_Real | a_Integer]:= a - 1

MatchQ[x^2,{_}| _^2]



Pure Functions
square[x_]:= x^2

is the same as 
Function[#^2]

is the same as 
(#^2)& 

is the same as 
Function[x, x^2]

Thus, (#^2)&[5] is 25

What is (#^3)&[(#+2)&[3]] ? 125

What is (#[[1]]^#[[2]])&[{2,3}] ?? 8



Conditional Pattern Matching

making it contingent upon meeting certain conditions

f[x_?EvenQ]:= x;

f[x_?OddQ]:= x^2;

f[x_]/;Element[x, Reals] && x > 1 := 1/x

MatchQ[2,_?(#>3&)]

MatchQ[2,_Integer ?(#>3&)]

MatchQ[a^b, _^y_/;Head[y] == Symbol]



Pattern Matching Complexity

bar[a_ * b_, x_] := bar[b, x] /; FreeQ[a, x]

sort[xs___,x_,y_,ys___]:= sort[xs,y,x,ys]/;x > y

We have no idea how efficient Mathematica's 
pattern matching…

Bubble sort:

The above could be very expensive. For example

bar[a*b*c*d*e*f*x, x] has a linear complexity



Higher-order Functions
Apply, Map, MapThread, Nest, 

NestList, Fold, FoldList, FixedPoint,

FixedPointList, Inner, Outer 

Fold[#1^#2&, x, {a, b, c, d}]

What is Fold[1/(#1+#2)&,x,{1,1,1,1}] ?

CF: 1/(1+1/(1+1/(1+x)

is (((xa)b)c)

FoldList[#1^#2&,x,{a,b,c,d}]

gives
{x,xa,(x^a)b,((x^a)^b)c,(((x^a)^b)^c)d}



Mandelbrot Set
The Mandelbrot set is the set of all complex 
numbers  c for which sequence defined by the 
iteration 

f(n+1) = f(n)2+c, f(0) = c

remains bounded.

FixedPoint[#2 + c &, c]

FixedPoint[#2 + c &, c, 

SameTest->(Abs[#2-#1] > 10&)]

Mandelbrot[x_]:=

Length[FixedPointList[#2 + c &, c, 80, 

SameTest->(Abs[#2-#1] > 10&)]]



Mandelbrot Set
DensityPlot[-Mandelbrot[x + y I],
{x,-2,0.5},{y,-1,1}, Mesh->False, 
Frame->False, AspectRatio->Automatic, 
PlotPoints->125];



Programming Styles

Procedural Programming

Functional Programming

Rule-Based Programming

Dynamic Programming

Compute n!



Procedural

procedural[x_] :=

Module[{prod = 1,ind = 1}, 

If[!(IntegerQ[x] && Positive[x]), Return[]];

While[ind <= x, prod *= ind; ind++];

Return[prod]

]



Recursive

rec[1] = 1

rec[x_Integer?Positive] := x rec[x-1] 



Functional

functional[x_Integer?Positive] := Times @@ Range[x]

This is the fastest…



Internal Hashing

dp[x_Integer?Positive] := dp[x] = Times @@ Range[x]

All intermediate results are stored…



Numeric Computations
N[Pi] – default machine precision ($MachinePrecision)

Machine numbers work by making direct use of the 
numerical capabilities of your underlying computer 
system.

N[Pi, 5000] – arbitrary precision

Arbitrary precision computations are based on GMP.

GMP is a free GNU library for arbitrary precision 
arithmetic, operating on signed integers, rational 
numbers, and floating-point numbers with no 
practical limit to the precision except the ones 
implied by the available memory.


