15-354: CDM K. Sutner

Assignment 6 Due: **November 3, 2023, 24:00**.

1. Equational Theories (30)

Background

Suppose we have a language of first-order logic that has only function symbols (plus equality). In this case the only atomic formulae look like

$$f(x, g(x, y)) = h(y, x)$$

By an equational theory we mean a set Γ of equations of this kind (where one should think of all the variables as being universally quantified). Equational theories are hugely important in algebra. By a model of Γ we mean any first-order structure that satisfies all the axioms in Γ .

Task

- A. Suppose we have only one unary function symbol f and a single axiom of the form $\gamma_n \equiv f^n(x) = x$, $n \ge 0$. Find all the models of γ_n up to isomorphism.
- B. Find a way to express groups as an equational theory.
- C. Wurzelbrunft thinks he has found an exceedingly clever equational theory that has only infinite models. What do you say?
- D. Show how to define a product operation on the models of an equational theory so that, for all models M_1 and M_2 , the product $M_1 \times M_2$ is another model (that depends on both M_1 and M_2)

Comment For part (B), you need to specify the language as well as the axioms. For part (C), recall that all our first-order structures are required to have at least one element. Lastly, in (D), the product $M_1 \times M_2$ has to depend on both M_1 and M_2 , and it has to be useful.

2. Arithmetic Transducers (30)

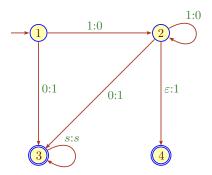
Background

In the following we will always use reverse binary representations of natural numbers, so the value of a string $x = x_0x_1...x_{n-1} \in \mathbf{2}^*$ is $\mathsf{val}(x) = \sum_{i < n} x_i 2^i$. We do not allow trailing zeros, except for the string '0' with value $0 : \mathbb{N}$, so numbers are represented by the regular language $N = \{0\} \cup \{0,1\}^*1$. Note that, restricted to N, val is a bijection.

Now suppose we have some transducer \mathcal{T} defining a transduction $\tau \subseteq N \times N$. We say that \mathcal{T} implements an arithmetic function $f: \mathbb{N} \to \mathbb{N}$ if

$$\tau = \{ (\mathsf{val}(x), f(\mathsf{val}(x)) \mid x \in \mathbb{N} \}$$

For example, the following transducer implements the successor function:



Task

- A. Find a transducer that implements the function $n \mapsto n+2$ and prove correctness.
- B. Find a transducer that implements the function $n \mapsto n+3$ and prove correctness.
- C. Find a transducer that implements the function $n \mapsto 3n+2$ and prove correctness.

Comment

It may help to assume initially that there are trailing zeros.

CDM HW 6 2 of 3

3. Reversibility of ECA (40)

Background

Suppose $\rho: \mathbf{2}^3 \to \mathbf{2}$ is the local map of an elementary cellular automaton (i.e., a ternary Boolean function). We have seen how to construct from ρ a synchronous transducer $\mathcal{A}_{\to,x,y}$ that checks whether a finite bit sequence x evolves to y in one step under fixed boundary conditions. Naturally, there is a similar machine for cyclic boundary conditions, though things are a bit messier than in the fixed case.

Reversibility of a cellular automaton is expressed by the first-order formula

$$\mathsf{inj} \equiv \forall x, y, z (x \rightarrow z \land y \rightarrow z \Rightarrow x = y)$$

It is slightly easier to work with irreversibility, expressed by the negation ninj = ¬inj.

Task

- A. Construct a synchronous 2-track transducer $\mathcal{B}_{\rightarrow}$ that checks whether a finite bit sequence x evolves to y in one step under cyclic boundary conditions.
- B. Then build a synchronous 3-track transducer \mathcal{A} that accepts the language defined by the matrix of ninj.
- C. What does A have to do with injectivity of the global map on 2^n ?
- D. Explain how one can directly construct a 2-track transducer \mathcal{A}' that still can be used to check ninj. This machine should be of the form $\mathcal{A}' = \mathcal{A}_0 \times \mathcal{U}$ where \mathcal{U} is the un-equal transducer on 2 tracks.

Comment

For part (A), nondeterminism is critical (see the construction for the fixed boundary condition case). To avoid a silly edge case, let's assume that all words are non-empty.

CDM HW 6 3 of 3