
CDM

Model Checking and Rational Relations

Klaus Sutner

Carnegie Mellon University
Spring 2023

1 Model Checking

2 Rational Relations

Deciding Truth 2

Back to model checking:

Problem: Model Checking
Instance: A FO structure C and a FO sentence φ.
Question: Is φ valid over C?

Note that if we are trying to find algorithms for this problem we will need to be
able to specify the structure C as part of the input. Obviously this is going to
be a bit tricky.

But: for finite structures this should be just fine. A computer chip, e.g., is a
finite structure.

The Dream 3

decision algorithm

ϕ

true

false

C

If C is finite this is doable (and clearly primitive recursive), but what should this
even mean if C is infinite?

The Trick:
Use a finite representation of C, not the actual structure.

Old-Fashioned Theories 4

Model checking is CS terminology and fairly recent, in standard mathematical
logic one usually speaks about the complete diagram or the first-order theory†

of a structure.

Th(C) = { φ sentence | C |= φ }

This is nothing but the view of C through the lense of first-order logic,
everything we can express about C in this framework. Model checking then
comes down to determining whether φ ∈ Th(C).

Since formulae are just syntactic objects (that can easily be coded as natural
numbers or strings), Th(C) might well be, say, decidable. So the underlying
language has to be countable; an entirely reasonable assumption.

†Not great terminology, since “theory” is also used in connection with axioms and derivations.

Finite Representations 5

The idea to use finite representations to deal with infinite objects is one of the
core ideas in all of math. In fact, in a way, math can be thought of as
wordprocessing (manipulation of finite symbol sequences)†.

In CS, this issue is front and center: not only do we need finite representations,
we need them to be well-behaved from an algorithmic point of view. This adds
multiple levels of complexity and makes life more interesting (read: difficult).

†That’s them fighting words, of course. Math is much more than this, but the “wordprocess-
ing” part is absolutely key.

Describing Structures 6

For finite structures, there is a straightforward solution: we can write down
lookup tables for all the functions and relations. In practice, a more succinct
representation may be preferable, though, even in the finite case: for large
structures we get tables that are too big to manage in practice. .

More generally, we can consider computable structures where the carrier set is
N (or a subset thereof) and all the functions and relations are computable.

The representation of C would then be a collection of computable functions,
each given by a program. This is a huge simplification compared to the
standard model where everything is defined in set theory (and computability is
a non-issue).

Complexity Finite Structures 7

To check validity of a sentence over a finite structure, essentially one can just
implement Tarski’s definition of truth.

Testing truth of the matrix of a formula, given bindings for all the quantified
variables, really comes down to repeated table lookup. To deal with quantifiers
we use loops ranging over the finite universe. So the algorithm is certainly
primitive recursive.

In fact, a closer look shows that PSPACE is already enough. Alas, that is
where things end: even when A = {0, 1} and we only have the standard
Boolean operations, validity checking for FOL formula is PSPACE-complete
(this problem is essentially QBF: quantified Boolean formulae).

Computable Structures 8

The prime example for a computable structure is the natural numbers with the
usual operations of arithmetic:

N = ⟨N; +, ·, 0, 1, <⟩

Incidentally, this is the only computable model of the Dedekind-Peano axioms.

Theorem
The theory of the natural numbers with addition and multiplication is
undecidable.

Horribly, terribly, hopelessly undecidable, in fact.

☠☠☠☠☠

Presburger Arithmetic 9

So is this all this model checking business just a pipedream?

No, we just need to simplify matters more. Presburger arithmetic uses the
language L(+, −, 0, 1; <) of signature (2, 2, 0, 0; 2), informally this is arithmetic
without multiplication.

Theorem (M. Presburger, 1929)
Presburger arithmetic is decidable.

We’ll see a proof next week. Unsurprisingly, Presburger’s algorithm is triple
exponential: even for quantifier-free formulae the problem is NP-hard.

Better Numbers 10

Interestingly, replacing integers by rationals in full arithmetic does not help:

Theorem (J. Robinson, 1948)
The theory of the rationals with addition and multiplication is undecidable.

Somewhat counterintuitively, replacing the rationals by the reals (an
uncountable structure, no less) makes things easier: now the theory is
decidable by a famous result by Tarski.

Theorem (A. Tarski, 1948)
The theory of the reals with addition and multiplication is decidable.

Quantifier Elimination 11

As a consequence, basic geometry is decidable. This is interesting e.g. for
robotics.

The theorem is proved by a very interesting technique that provides a direct
decision algorithm: quantifier elimination, meaning that a quantified formula is
transformed into an equivalent one without the quantifier:

∃ x φ(x) ⇝ φ̂

The transformation is easily computable.

Tarski’s original method was highly inefficient, though (not bounded by a stack
of exponentials). There are better methods now, but the complexity is provably
doubly exponential.

MC Variant: Fixed Structure 12

Clearly, it can be very interesting to solve the model checking problem even
when the structure C is fixed. For fixed structures one often speaks of
expression model checking.

Problem: Expression Model Checking (for C)
Instance: A FO sentence φ.
Question: Is φ valid over C?

EMC for N is undecidable, but for Presburger arithmetic there is a decision
algorithm.

MC Variant: Fixed Formula 13

Here is another variant of model checking that may seem slightly less natural:
the formula is fixed and the structure varies.

Problem: Data Model Checking
Instance: A FO structure C.
Question: Is φ valid over C?

Usually the class of structures under consideration is fairly narrow: one can
think of this as a classification problem. For example, one might want to know
whether a cellular automaton is reversible (see below).

In CS one often speaks of data complexity in connection with this variant.

Feynman 14

It bothers me that, according to the laws as we understand them
today, it takes a computing machine an infinite number of logical
operations to figure out what goes on in no matter how tiny a
region of space, and no matter how tiny a region of time. How
can all that be going on in that tiny space? Why should it take an
infinite amount of logic to figure out what a tiny piece of space-
time is going to do? So I have often made the hypothesis that
ultimately physics will not require a mathematical statement,
that in the end the machinery will be revealed and the laws will
turn out to be simple, like the checker board with all its apparent
complexities.

R. Feynman, 1965

Running Example: Cellular Automata 15

To avoid major technical problems, we will use cellular automata (rather than
real program/hardware verification) as a sandbox to play in. Here are the basic
definitions.

Definition ((Finite) Elementary Cellular Automaton (ECA))
A ternary Boolean function f : 23 → 2 is called an (elementary) local map.
The corresponding global map f̂ : 2Z −→ 2Z is defined by

f̂(x)(i) = f(xi−1, xi, xi+1)

The elements of 2Z are configurations.

We may also write Gf on occasion to avoid confusion.

Hence there are 256 ECA and they can by indexed naturally as 0 ≤ e < 256.

Comments 16

One of thinks of configurations as being given by assigning a particular state to
each cell in a biinfinite one-dimensional grid.

Alternatively one can also consider one-way infinitude configurations so that
the global map takes the form

f̂ : 2N −→ 2N

Pushing a bit harder, we wind up with finite configurations and global maps

f̂ : 2n −→ 2n

Note that there is a problem, though: some of the cells do not have two
neighbors, as required by our definition.

Boundary Conditions 17

There are two standard solutions to this. In particular for finite configurations
we have

Cyclic Think of x as being cyclic, so x0 is adjacent to xn−1.

Fixed Apply the local map to the blocks of 0 w 0.

The fixed boundary approach also works in the one-way infinite case.

These are actually harder to deal with than the biinfinite ones. Trust me.

Exercise
Explain what cyclic boundary conditions have to do with biinfinite
configurations.

Exercise
Come up with another way to fix the missing neighbors problem.

Why ECA? 18

Cellular automata are quite fashionable these days, and they work well in our
situation:

There is a fairly well developed theory (stemming from the venerable area
of symbolic dynamics).

They produce beautiful pictures. More generally, geometry can help greatly
in understanding their basic properties.

Lastly, and unexpectedly, even our exceedingly simple ECA display amaz-
ingly complex behavior, against all intuition.

Our methods generalize directly to local maps of the form Σw → Σ where Σ is
an arbitrary alphabet and w ≥ 2 is any width.

Terminology 19

The bit sequences are usually called configurations of type 2n, 2N or 2Z. One
of thinks of a one-dimensional grid of cells, each in a particular state.

To determine the next configuration, a configuration is chopped up into
overlapping blocks of length 3, and they are simultaneously replaced by their
image under the local map f .

One can think of cellular automata as very simple models of physics† : space is
one-dimensional, has been chopped up into discrete cells, each cell requires
only one bit to describe its current state. Time is also discrete, and this system
evolves according to a simple local map (no action at a distance) that is
uniform and synchronized throughout the space. Accordingly, one often speaks
of a local rule and global rule.

†Admittedly, this makes much more sense for 2- and 3-dimensional cellular automata.

Rule 90 20

Here is local map for ECA 90, f(x, y, z) = x ⊕ z.

And here are the first few steps when iterating f̂ on the configuration
. . . 0001000

It’s A Fractal 21

Exercise
Prove that this fractal has dimension log2 3.

Computational Reducibility 22

Suppose we have an initial configuration X ∈ 2n. It is natural to ask whether
one can easily compute the configuration at time t

Y = f̂ t(X)

Of course, we can just iterate f̂ on X and be done with it.

The real question is this: can we compute Y without computing all t
configurations in the orbit. For example, can we get away with O(log t)
configurations?

Exercise
Consider ECA 90, local map f(x, y, z) = x ⊕ z.
Show that a log t shortcut exists for this ECA.

Some ECA Behaviors 23

Types of CA 24

Somewhat surprisingly, elementary cellular automata seem to display roughly 4
types of behavior.

All configurations die out after a while.
All configurations become periodic after a while.
Orbits are chaotic and seemingly random.
Orbits produce complex persistent structures.

These are called Wolfram classes.

The ECA on the bottom right is ECA 110, and has been proven to be
computationally universal.

Note, though, that Wolfram’s classification is entirely heuristical, it seems
hopeless to formalize it in terms of computability theory (one can construct
cellular automata that mix up the four classes).

ECA 110 25

General Case 26

And things get even more interesting when we generalize a bit: local maps look
like

f : Σ2r+1 → Σ

and the global maps are ΣZ −→ ΣZ (r is the radius of the CA and k = |Σ|).

Note that there are kk2r+1
such general cellular automata. For k = 3 and

r = 2 this produces

871896424859609582029110705858607716969640724047317500855252194379
90967093723439943475549906831683116791055225665627 ≈ 8.72 × 10115

For k = 8, r = 2 the number increases to 2.84 × 1029592 As far as search is
concerned, these numbers might as well be infinite.

A Wild CA (k = 8, r = 2) 27

Symbolic Dynamics 28

The definition of a global map may seem a bit ad hoc, but they are actually
quite natural.

Theorem (Curtis-Hedlund-Lyndon 1969)
A map ΣZ −→ ΣZ is a global map iff it is continuous and shift invariant.

Shift invariant means that the map commutes with σ : ΣZ → ΣZ defined by
σ(X)(i) = X(i + 1). In other words, we want to get rid of the coordinate
system imposed by Z.

There has been a huge amount of research on cellular automata since the CHL
theorem.

A FO Structure 29

We can think of an elementary cellular automaton as a FO structure of the form

C = ⟨2Z; f⟩

where f : 2Z → 2Z is the global map. So we are dealing with an uncountable
space (a zero-dimensional compact Hausdorff space), but f is completely
defined by the corresponding local map, a bit-vector of length 8.

We would like to understand the properties of C.

Amazingly, if we limit ourselves to propositions in first-order logic, then we can
check them automatically. Model checking works just fine in this case.

The Truth: FOL here is not terribly strong, e.g., we cannot say anything about
orbits in general.

Reversibility 30

One of the basic questions about dynamical systems is reversibility: is the map
f injective?

Theorem (KS 1991)
There is a quadratic time algorithm to test reversibility.
Essentially the same algorithm also tests surjectivity and openness.

It is known that for the global maps of cellular automata, reversible implies
open implies surjective (but not the other way around). This is obvious from
the algorithm that checks for increasingly restrictive properties of a certain
graph associated with the CA.

Better Mousetrap 31

Reversibility of a cellular automaton can be expressed in first-order:

∀ x, y
(
f(x) = f(y) ⇒ x = y

)
For technical reasons, it is better to think of the function f as a binary relation
_. Then the formula looks like so:

∀ x, y, z
(
x _ z ∧ y _ z ⇒ x = y

)
So, if we can model check structures C = ⟨2Z; _⟩, we can decide reversibility.

Sad Story: Annoyingly, with a little effort this even yields the algorithms from
the last paper—a fact that I was totally unaware of when I wrote the paper. In
my mind, automata-based decision methods were pure theory, very elegant but
totally unimplementable.
GANS really is your friend (within bounds, of course).

Surjectivity and Openness 32

How about the other properties? Surjectivity is easy:

∀ x ∃ z
(
z _ x

)

But openness is more difficult: it’s a topological property dealing with open
sets and there is no direct first-order definition.

Here is a trick: define x
∗= y to mean that configurations x and y differ in only

finitely many places. Then the global map is open iff

∀ x, y, z (x _ z ∧ y _ z ∧ x
∗= y ⇒ x = y)

Alas, ∗= is not first-order definable over ⟨2Z; _⟩, so we cannot rewrite this
formula into one that does not contain ∗=.

But: we can model check the larger structure ⟨2Z; _,
∗=⟩.

Going Finite 33

To avoid all sorts of technical arduousness, let us start with finite ECA.

Cn = ⟨2n; _⟩

We can think of Cn as directed graph and will also refer to these structures as
the phase-space of the ECA (for size n configurations).

Our goal is solve the expression model checking problem for these structures.

Note that there is a very simple, succinct description of a phase-space: for the
global map, all we need is the local map which can be written as 8 bits for
ECA; so we are really given some log n + c bits.

Spectra 34

Since there are infinitely many finite spaces Cn, it is natural to ask for which
values of the parameter n a certain proposition holds (this is data model
checking, in essence):

spec φ = { n ∈ N | Cn |= φ }

This set of “good” grid sizes is called the spectrum of φ.

For example, we might want to know for which n a fixed local rule produces a
reversible global rule on 2n, say, under cyclic boundary conditions.

We’ll see how to compute the spectrum of a first-order formula.

ECA 90, Phase Space n = 5, . . . , 10 35

ECA 90, Phase Space n = 8 36

ECA 90, Phase Space n = 10 Isomorphs 37

Counts: 1, 5, 40.

ECA 150, Phase Space n = 5, . . . , 10 38

ECA 150, Phase Space n = 10 Isomorphs 39

Counts: 4, 20, 160.

1 Model Checking

2 Rational Relations

Specifying Structures 41

Time to get real. For the general model checking problem we need, as part of
the input, structures of the form

A = ⟨A; f1, f2, . . . , R1, R2, . . .⟩

So we have to specify the carrier set as well as a collection of functions and
relations on this set.

In set theory, this is a total non-issue; just write down the definitions of all
these sets. Unfortunately, in the computational universe, this is usually quite
meaningless.

Instead, we need a finite data structure that represents A.

Crazy Idea 42

How about structures that can be described by finite state machines?

The carrier set would be a regular set of words. This may sound awful, but it is
not too bad: the words in the language are names for the elements. For
example, we could use binary strings to describe natural numbers.

But for the functions and relations we need to do a bit of groundwork first.
Recall: our finite state machine can deal with languages, but not with functions
and relations.

Actually, we will get around functions by simply assuming there are no function
symbols in our language. This is not a big restriction, we can always translate a
function into its graph, a relation.

Relational Structures 43

A relational structure is a FO structure of the form

C = ⟨A; R1, R2, . . . , Rk⟩

In other words, we simply do not allow any functions.

This may seem too radical, but remember that we can always fake functions as
relations:

x _ y ⇐⇒ f(x) = y

Here _ is just a binary relation with certain special properties.

White Lie 44

Note that this switch to relations changes our formulae a bit.

For example, consider the simple atomic formula f(f(x)) = y. Utterly standard
notation, but it actually hides a quantifier:

∃ z (f(x) = z ∧ f(z) = y)

Just to be clear, the notation is perfectly good, but any decision algorithm has
to cope with this invisible quantifier, one way or another.

In a purely relational structure everything is clearly visible, we have to write
something like

∃ z (x _ z ∧ z _ y)

This can make life slightly easier for the decision algorithm.

A Word Structure 45

So the structures we are interested in have the restricted form

C = ⟨A; R1, R2, . . .⟩

where

A ⊆ Σ⋆ is a regular set of words, and

Ri ⊆ Aki , are regular relations on words of arity ki.

We already know how to handle the carrier set, but we do not have anything
like a “regular relation” at this point.

Rain Check 46

You might object at this point that the spaces ΣZ and ΣN from our cellular
automata example are not regular languages according to our (entirely
reasonable) definitions.

Entirely true, but we will soon generalize finite state machines and regularity to
languages of infinite strings. It will turn out that ΣZ and ΣN are trivially
regular given the right definitions.

For the time being we will stick with finite strings, though.

Wisdom 47

The author (along with many other people) has come recently
to the conclusion that the functions computed by the various
machines are more important–or at least more basic–than the
sets accepted by these devices.

D. Scott, Some Definitional Suggestions for Automata Theory, 1967

From Languages to Relations 48

So the next project is to generalize regular languages to some reasonable class
of regular relations, also known as rational relations.

We have two basic options to tackle this problem:

Invent some kind of memoryless machine that takes k-tuples of words as
input.

Exploit Kleene’s algebraic characterization of regular languages.

We’ll start with the machine model and then develop the corresponding
algebraic approach.

Multi-Words 49

Instead of single words over an alphabet we will use k-tuples of words, possibly
over different alphabets:

u ∈ Σ⋆
1 × Σ⋆

2 × . . . × Σ⋆
k

To emphasize that we still have word-specific operations such as concatenation
on these objects we will refer to them as multi-words or k-track words.

To display the component words we usually write

u = u1:u2: . . . :uk

The most important case is when k = 2, u = x:y. This is just a pair of words,
but, as we will see, there is algebra hiding in the background, so it’s better to
have distinctive notation.

Transductions 50

A transduction is a relation of the form

ρ ⊆ Σ⋆ × Γ ⋆

In other words, ρ is a binary relation on words (or, alternatively, a language of
multi-words).

On occasion it is useful to think of such a relation as a map

ρ : Σ⋆ −→ P(Γ ⋆)

where ρ(x) = { y | ρ(x, y) }.

Machines for Relations 51

What would such a finite state machine A describing a transduction look like?
There are two useful perspectives:

Language of multi-words.
Partial function to sets of words.

For the language interpretation it is natural to build an acceptor for such a
language. In essence, we simply change the transition labels from words to
multi-words:

τ ⊆ Q × Σ⋆ × Γ ⋆ × Q

So we allow arbitrary words as labels (unlike letters in the plain finite state
machine case). More on this later.

Other than that, we simply copy the definitions from our discussion of regular
languages.

Multi-Tape Finite State Machines 52

A good way to think about an acceptor of multi-words is to modify our old
finite state machines:

Keep the finite state control.
Allow multiple tapes.

Each tape has a separate, one-way read head. Importantly, the heads move
independently from each other; in particular, one head can get arbitrarily far
ahead of another.

We can express the two-tape situation via a transition relation of the type

τ ⊆ Q × Σε × Γε × Q

Two-Tape Machines 53

We can check that x = y: do a letter by letter comparison.

We can check that x ̸= y: see below.

We can check that x is a prefix of y: do a letter by letter comparison until x
ends, then skip over the rest of y.

We can check that x is a suffix of y: nondeterministically skip to the right
place in y, then do a letter by letter comparison.

BTW, it is often helpful to attach a special endmarker (typically #) to the end
of all words. The machines are a little cleaner this way.

Un-Equal 54

Here is a transducer whose behavior is the relation x ̸= y.

a/b

a/ε

ε/a

a/a

∗

a/ε

ε/a

In the diagram, a and b are supposed to range over Σ, and a ̸= b.
∗ means eternal bliss.

Substitution 55

A transducer that (essentially) replaces the first occurrence of abbb by baaa.

0 1 2 3 4 5
a/ε

b/b

b/ε

a/a

b/ε

a/ab

b/ε

a/abb

ε/baaa

s/s

Exercise
Why does this transducer not quite work? Fix the problem. Then change the
machine so that all occurrences are replaced.

Partial Functions 56

We can also think of a transition p
u:v−→ q as indicating that input u is

transformed into output v.

Some authors also write p
u/v−→ q, in analogy to the usual way of expressing

substitutions.

Warning: We explicitly allow for a single input to be associated with many
outputs (or perhaps with none at all).

As we will see shortly, for transducers (as opposed to ordinary acceptors) this
sort of nondeterminism is absolutely critical, there is no general method to get
rid of it.

Lifting 57

As for ordinary transition systems, define the trace or label of a run π

π = p0
u1:v1−→ p1

u2:v2−→ p2 . . . pn−1
un:vn−→ pn

in the diagram as the product of the respective labels in the monoid:

lab(π) = u:v = (u1u2 . . . un , v1v2 . . . vn) ∈ Σ⋆ × Γ ⋆.

As usual, we are interested in runs from I to F .

Transducers 58

Definition
A transducer is an automaton T = ⟨S; I, F ⟩ where S is a finite transition
system over Σ⋆ × Γ ⋆; the acceptance condition is given by I, F ⊆ Q.
The transduction associated with T is the relation

L(T) = { lab(π) | π run from I to F } ⊆ Σ⋆ × Γ ⋆

A transduction is rational if it is accepted by some transducer.

One also speaks about the behavior of T , written JT K, and we can say that T
recognizes L(T).

Transition Splitting 59

Note that by transition-splitting it suffices to consider labels of the form

a:b and a:ε and ε:b.

A transducer is alphabetic if all labels are of the form

a:b where a, b ∈ Σ

These transductions are length-preserving and are much easier to handle than
the general ones.

Of example, iterating a length-preserving transducer only produces finite orbits.

Recall: Kleene’s Theorem 60

Here is a more algebraic approach towards a definition of “regular relation.”
Recall Kleene’s theorem on regular languages.

Theorem (Kleene 1956)
Every regular language over Σ can be constructed from ∅ and singletons {a},
a ∈ Σ, using only the operations union, concatenation and Kleene star.

It follows that there is a convenient notation system (regular expressions) for
regular languages that is radically different from finite state machines: we can
use an algebra (albeit a slightly weird one) to concoct regular languages.

One direction is easy, given the closure properties of regular languages we
already have: every regular expression denotes a regular language.

Algebra to the Rescue 61

The opposite direction is handled by dynamic programming. Unfortunately, the
regular expressions involved grow exponentially, so the algorithm is not
practical.

Still, one very nice feature of Kleene’s characterization is that a good definition
often generalizes. In this case, the monoid Σ⋆ is perhaps the most natural
setting, but there are other plausible choices.

In particular we could use the product monoid Σ⋆ × Σ⋆ instead: since we are
dealing with sets of pairs of strings we naturally obtain binary relations this
way.

The relevant algebraic structures are called Kleene algebras. We will not study
them in any detail and just pull out the pieces that we need for our project.

More GANS 62

Suppose ⟨M, ·, 1⟩ is a monoid. Here is a general way to construct a Kleene
algebra on top of M . The carrier set is P(M) and the operations are

set theoretic union,
pointwise multiplication, and
Kleene star.

More precisely, define

K · L = { x · y | x ∈ K, y ∈ L }

K0 = {1}, Kn+1 = K · Kn

K⋆ =
⋃
n≥0

Kn

K⋆ always exists by set theory. Define K+ = KK⋆.

Rational Relations 63

Definition
A k-ary Kleene rational relation is a relation R ⊆ M where

M = Σ⋆
1 × Σ⋆

2 × . . . × Σ⋆
k

and R is generated in the Kleene algebra over M from elements

ε: . . . :ε:a:ε: . . . :ε

Strictly speaking, the last multi-word should be a singleton set, but in this
context it is best not to distinguish between z and {z}. Trust me.

In the special case k = 1 we get back ordinary regular languages.

Better Generators 64

It is easy to see that we could also allow generators that are (singletons) of
arbitrary multi-words:

x1:x2: . . . :xk−1:xk

where xi ∈ Σ⋆
i .

Using these and customary operation symbols +, · (often implicit) and ⋆ we
obtain rational expressions that provide a notation system for rational relations.

Unfortunately, because of the multiple tracks, this notation system is not as
useful as in the case of languages.

Preserving Sanity 65

We will mostly deal with the case k = 2 and consider the monoid

M = Σ⋆ × Γ ⋆

The operation here is x:y · u:v = xu:yv and the neutral element is ε:ε. In
algebraic terms, this is just a product monoid.

Writing rational expressions here can be a bit confusing, In particular in the
case k = 2 it may be better to use vector notation as in

(
x
y

)
rather than x:y.

This corresponds better to the idea of having two tracks with one word in each
track.

Note that multiplication here is componentwise:(
x
y

)
·
(

u
v

)
=

(
xu
yv

)

Examples 66

Let Σ = {a, b}.
The universal relation on Σ⋆ is given by((

ε
a

)
+

(
ε
b

)
+

(
a
ε

)
+

(
b
ε

))∗ = {
(

x
y

)
| x, y ∈ Σ⋆ }

The identity relation on Σ⋆ is given by((
a
a

)
+

(
b
b

))∗ = {
(

x
x

)
| x ∈ Σ⋆ }

Exercise
Construct an expression for the un-equal relation.

Kleene’s Theorem on Steroids 67

Theorem
A relation is Kleene rational if, and only if, it is the behavior of a (finite)
transducer.

The proof is an exact re-run of the argument for regular languages.
A careful inspection of the argument shows that all one needs is labels chosen
from a monoid; the fact that the monoid in the language case is the free
monoid Σ⋆ plays no role.

Exercise
Write out a detailed proof of the theorem.

	Model Checking
	Rational Relations

