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Ducci Sequences 2

Here is a classical if slightly frivolous example of an apparently simple iteration
that has lots of interesting properties.

Place 4 integers on a circle. Compute the absolute values
of all differences of adjacent pairs of numbers. Write
these values between the corresponding numbers and
erase the numbers themselves.

Repeat. What happens?

This was introduced by Enrico Ducci (1864-1940) in the 1930s, and was mostly
forgotten till Honsberger’s “Ingenuity in Mathematics” appeared in 1970.



Less Informally 3

We can ignore integers, after one step we are dealing only with natural
numbers.

So, we want to iterate the following function on N4:

D(x1, x2, x3, x4) = (|x1 − x2|, |x2 − x3|, |x3 − x4|, |x4 − x1|)

Is there anything one can say about repeated application of this function?



Sample Ducci Sequences 4

Here are two small examples, we iterate D on “random” initial conditions.

0 10 13 4 20
1 3 9 16 10
2 6 7 6 7
3 1 1 1 1
4 0 0 0 0

0 94 68 11 85
1 26 57 74 9
2 31 17 65 17
3 14 48 48 14
4 34 0 34 0
5 34 34 34 34
6 0 0 0 0

Somewhat surprisingly, after a few steps we reach the 0 vector which is, of
course, a fixed point of the operation.

Exercise
Produce initial values so that it takes many steps to reach 0.



The Basics 5

The first observation is that all orbits end in fixed point 0.

Theorem (Ducci)
After finitely many steps the fixed point (0, 0, 0, 0) is reached.

Proof?

Call the maximum element of a vector its weight.
Clearly, weights are non-increasing and it suffices to show that they decrease
every once in a while.
A little fumbling shows that weight can be preserved only if the vector looks
like (0, a, b, c) where a ≥ b, c, up to rotation.
Now we can do a straightforward but exceedingly boring case analysis.



A Better Way 6

Consider only the parity of a vector, up to rotations:

0001

0011

0111

0101 1111 0000

Exercise
Verify the diagram and finish the argument.



Transients 7

It is rather surprisingly difficult to choose initial condition that lead to long runs
before 0 is reached, but there is no bound on the number of steps.

Simply choosing large numbers won’t work: they tend to cancel each other out.

Lemma (Webb 1982)
There is no bound on the number of steps needed to reach 0.

The idea is to consider a family Xn of special vectors with the hope that
D(Xn) = Xn−1.

Alas, life is a bit more complicated than that.



Long Transients 8

To construct initial conditions leading to long transients, consider “tribonacci
numbers”

tn = tn−1 + tn−2 + tn−3 t0 = 0 t1 = t2 = 1

The first few values are

0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, . . .

Now consider the configurations Xn = (tn, tn−1, tn−2, tn−3).
A little bit of work shows

D3(Xn) = 2 · R(Xn−2)

where R denotes cyclic shift to the right.



Generalization I: How About the Reals? 9

We might try to force divergence by using irrational or even transcendental
numbers. At least the following valiant attempt fails.
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Exercise
Explain why this and similar attempts will fail to produce divergence.



An Amazing Exception 10

After a few more experiments one might conclude that convergence to 0 always
occurs, but that is false. Let q be the real root of x3 − x2 − x − 1 = 0, so

q = 1
3
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)
≈ 1.83929

Then (1, q, q2, q3) does not converge. E.g. after 5 steps we get a term
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This was shown by M. Lotan in 1949.



Generalization II: How About n ̸= 4? 11

Over Nn evolution does no longer lead to a fixed point in general, but
eventually becomes periodic.

Theorem (Ciamberlini, Marengoni 1937)
Every Ducci sequence of width n ends in fixed point 0 if, and only if, n is a
power of 2.

Exercise
Why must any Ducci sequence over Nn be ultimately periodic?



Example: n = 5 12

0 1 2 3 4 5 6 7 8 9 10 11
4 2 2 3 1 3 1 2 1 2 1 1
6 4 5 2 4 2 3 1 3 1 0 1
10 9 7 6 6 5 4 4 2 1 1 1
1 2 1 0 1 1 0 2 1 0 0 2
3 1 1 1 2 1 2 1 1 0 2 1

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0
0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0
1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1
1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1
0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0

It is a bit surprising that after 12 steps the system is in a binary state. From
then on, it repeats every 15 steps.



The Limit Cycles 13

Needless to say, the binary behavior in the example is no coincidence.

Theorem (Burmester, Forcade, Jacobs 1978)
All Ducci sequences over the integers are ultimately periodic. The vectors on
the limit cycle are binary in the sense that xi ∈ {0, c} for some c.

Once the vector is binary, the Ducci operator degenerates into exclusive or:

D(x) = x xor L(x)

where L denotes the cyclic left-shift operation. We’ll come back to this later in
our discussion of cellular automata.
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Undecidability 15

So what is the computational complexity of iteration?

It is not hard to express the operation of a register machine as a fairly simple
function f and set things up in such a way that FP(f, x) exists iff the
computation starting on configuration x is halting.

Hence the existence of fixed points of computable arithmetic functions is
undecidable.

Exercise
Figure out the details.

As often, undecidability casts a shadow: iterating very simple functions can
create enormous complexity.



A Termination Question 16

Here is a seemingly innocent question: Does the following program halt for all
x ≥ 1?

while x > 1: // x positive integer
if x even:

x = x/2
else:

x = 3 * x + 1

The body of the while-loop is rather trivial, just some very basic arithmetic and
one if-then-else. This should not be difficult, right?



Collatz Register Machine 17

X- X- Y+ Z+

Z- Y+5

H Y+4

0

0

0

This computes the basic step x ; 3x + 1 or x/2.



The Collatz Loop Program 18

// Collatz: x --> z

e = 1; o = 0;
do x : t = e; e = o; o = t; od

u = 0; v = 0;
do x : t = u; u = v; v = t; u++; od

w = 0;
do x : w++; w++; w++; od
w++;

do e : z = u; od
do o : z = w; od

Exercise
Figure out exactly how this program works.



Collatz 3x + 1 19

The Collatz Problem revolves around the following function C on the positive
integers. There are several variants of this in the literature, under different
names.

C(x) =


1 if x = 1,
x/2 if x even,
(3x + 1)/2 otherwise.

This definition is slightly non-standard; usually case 1 is omitted and case 3
reads 3x + 1. Here are the first few values.

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . .
C(x) 1 1 5 2 8 3 11 4 14 5 17 6 20 7 23 8 . . .



Arithmetic Only 20

The definition by cases for C is arguably the most natural.
But, we can get by without logic and make the arithmetic slightly more
complicated. The following version does not treat argument 1 separately and
does not divide by 2 when the argument is odd.

Cari(x) = x/2 − (5x + 2)((−1)x − 1)/4



Digression: The Name of the Game 21

The Collatz problem was invented by Lothar Collatz around 1937, when he was
some 20 years old.

Since then, it has assumed a number of aliases:
Ulam, Hasse, Syracuse, Hailstone, Kakutani, . . .

Amazingly, in 1985 Sir Bryan Thwaites wrote a paper titled “My Conjecture”
claiming fatherhood. Talk about ethics . . . On the other hand, he also offered
£1000 for a proof.



Boring Plot 22
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Repetition 23

Of course, we are interested not in single applications of C but in repeated
application. In fact, the Collatz program keeps computing C until 1 is reached,
if ever.

Starting at 18:

18, 9, 14, 7, 11, 17, 26, 13, 20, 10, 5, 8, 4, 2, 1, 1, 1, . . .

Starting at 1000:

1000,500,250,125,188,94,47,71,107,161,242,121,182,91,137,

206,103,155,233,350,175,263,395,593,890,445,668,334,167,251,

377,566,283,425,638,319,479,719,1079,1619,2429,3644,1822,911,

1367,2051,3077,4616,2308,1154,577,866,433,650,325,488,244,

122,61,92,46,23,35,53,80,40,20,10,5,8,4,2,1,1,1,1,...



x = 1000 24
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x = 1001 25
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x = 1002 26
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Near Powers of 2 27

Starting at 225 − 1 ≈ 3.35 × 107.

50 100 150 200 250

1·10
12

2·10
12

3·10
12

4·10
12

It takes 282 steps to get to 1.



Collatz Conjecture 28

More computation shows that for all

x ≤ 3 · 253 ≈ 2.7 · 1016

the program always halts: C reaches the fixed point 1. Many other values of x
have also been tested.

Based on computational evidence as well as various clever arguments one has
the following conjecture:

Collatz Conjecture:
All orbits under C end in fixed point 1.



Stopping Times 29

In an attempt to prove the Collatz Conjecture it is natural to try to investigate
the (complete) stopping time: number of executions of the loop before 1 is
reached.

σ(x) =

{
min

(
t | Ct(x) = 1

)
if t exists,

∞ otherwise.

So the Collatz Conjecture holds iff σ(x) < ∞ for all x.

The stopping time function σ seems slightly more regular than C itself, but it’s
still rather complicated.



Stopping Times up to 500 30
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Stopping Times up to 5000 31
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Stopping Times up to 5000 32
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There clearly is some structure here
(the dots are certainly not random),
but what exactly is this mysterious
structure?

A good way to make this precise is prediction: if we already know the first 5000
dots, how hard is it to predict the position of dot 5001?

At this point, no one knows how to do this without computing the whole orbit
(at least not for arbitrary values of 5001).



Relative Stopping Time 33

As far as convergence is concerned it suffices to find the least t such that
Ct(x) < x (assuming it exists). Let us call this the (relative) stopping time.
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Relative Stopping 34

For the most part, relative stopping time are fairly small, perhaps something
like the logarithm. But: there are some conspicuous outliers. The same picture
for the first 1024 numbers.
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Orbit of 25 in Binary 35

Another potential way to gain insight in the behavior of the Collatz function is
to plot the numbers in binary (an implementation of C for large arguments
would use binary arrays anyway).



Collatz Mountains 36

x = 225 − 1 ≈ 3.35 × 107

x = 227 − 1 ≈ 1.34 × 108



Computing the Collatz Function 37

The question arises: what is the best way to compute the Collatz function? We
would like to be able to cope with numbers with thousands of bits.

The easy way out is to use a high-quality unbounded precision arithmetic
library such as GNU’s GMP.

BigInt Collatz( const BigInt& x ) {
if( x even )

return x/2;
else

return 3*x + 1;
}

Big advantage: This is really easy to implement and errors are just about
impossible.



Faster 38

The disadvantage: we are firing intercontinental missiles at sparrows.
Furthermore, memory management is important, we should avoid multiple
allocations and deallocations.

Observation 1: We don’t really need arithmetic.
If the given number is represented by a bit-vector we can do

return x >> 1;
// or

return (x<<1) + x + 1;

The last operation can be handled without arithmetic.



No Arithmetic 39

We only need to worry about the case x0 = 1. Let’s assume the LSD is first.

x 1 x1 x2 x3 x4 . . .
2x + 1 1 1 x1 x2 x3 . . .

3x + 1 0 x1 x1 + x2 + 1 x2 + x3 + c x3 + x4 + c′ . . .

So, we can scan over the input once and compute the output as we go along.
In fact, we can write the output into the same bit-vector (more or less).
The whole computation is linear in the number of bits with very small
constants.



No Allocation 40

Observation 2: We can avoid allocations by using one large bit-vector plus two
pointers lo and hi that delimit the currently active block of digits.

Division by 2 is then O(1): lo++

3x + 1 requires linear time and moves the active block to the right.

Every once in a while we reach the right end of the allocated block and have to
shift everything back to beginning (actually, for reasonable size n-bit numbers
allocating 6n bits seems to avoid this problem).



Digression: Wordprocessing 41

One can think of the Collatz function as a simple wordprocessing-type operation
on binary strings (the reverse binary expansion of the number in question).
The operation is extremely simple, it requires no extra memory and can be
modeled by a system performing state transitions while reading input bits and
writing output bits:

p q
a/b

meaning that the device, starting at state p and under input a, outputs b and
performs a transition to state q.
Repeating these transitions each input word x ∈ 2⋆ produces an output word
y ∈ 2⋆.

Such a device is called a transducer: it translates binary strings into binary
strings (similar to the example from lecture 1).



A Collatz Transducer 42

1/1 0/0

0/0 0/1

1/0 1/1

a/a

0/ε

1/0

A transducer for the standard Collatz function. One little glitch: the input
must be coded as x00 where x is the reverse binary expansion (LSD first, pad
right by two 0’s).



A Challenge 43

Implement a faster program to compute the Collatz function.

For example, the following output is generated by a program that runs in 0.2
seconds on a 2.66 GHz machine. Here x = 2k − 1, k = 1000, . . . , 1010.

k stop up down width
1000 7841 4316 3525 1585
1001 8804 4923 3881 1587
1002 8805 4923 3882 1589
1003 8806 4923 3883 1590
1004 8807 4923 3884 1592
1005 8808 4923 3885 1595
1006 8809 4923 3886 1595
1007 9127 5123 4004 1597
1008 9128 5123 4005 1598
1009 9129 5123 4006 1600
1010 9130 5123 4007 1601



Density 44

The relative stopping time pictures from above might suggest that for most
inputs the stopping time is reasonably small—but there are a few pesky
outliers.

Recall that the (asymptotic) density of a set A ⊆ N is defined by

lim
n

1
n

|A ∩ {0, 1, . . . , n − 1}|,

if it exists.

Thus, the set of even numbers has density 1/2, but the set of squares and
primes both have density 0.

Surprisingly, the set of square-free numbers has density 6/π2.



A Theorem 45

Theorem (R. Terras 1979)
The set of numbers that have relative stopping time at most k has positive
density.
Moreover, the limit of these densities is 1.

So, the Collatz conjecture is almost always true.
Of course, there could be a few exceptions, so this result is not really
satisfactory.
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Pseudo-Random Numbers 47

Iteration is a nice and orderly way to generate sequences, so it somewhat
surprising that it also provides a computationally efficient way produce
pseudo-random numbers.
One usually wants a numbers modulo some fixed N . The basic idea is simple:
pick a function

f : ZN → ZN

at random and use the sequence xn = fn(x0) where x0 is chosen
somehow–preferably at random ;-).
Then the sequence xn has nice properties:

Lemma
The expected value of transient and period of (xn) is Θ(

√
N).



Minor Obstruction 48

“Pick f and random” is not a helpful instruction. What we need instead is an
explicit method to compute f(x). Preferably the computation should be cheap,
say, quadratic in log N .

Anyone attempting to produce random numbers by
purely arithmetic means is, of course, in a state of sin.

John von Neumann

But there is a big surprise: there are good choices for f that are easy to
compute and still behave sufficiently random for many applications.

Warning: Cryptographic applications are very tricky.



Using Arithmetic 49

A popular choice going back to Derrick Lehmer (1948) are linear congruential
generators:

f(x) = a · x + b mod N

for suitable choices of a and b.

Getting the constants right is critical, bad choices ruin the LCG: A reasonably
good choice is for example

a = 1664525, b = 1013904223, N = 232



A Run 50



Multiplicative Congruential Generator 51

Omit the additive offset and use multiplicative constants only. If need be, use a
higher order recurrence.

xn = a1xn−1 + a2xn−2 + . . . akxn−k mod N

For prime moduli one can achieve period length Nk − 1.
This is almost as fast and easy to implement as LCG (though there is of course
more work involved in calculating modulo a prime).
This is still an iteration but over vectors of numbers, there is more state:
xn−1, xn−2, . . . , xn−k.



A Run 52
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Truly Random Bits 53
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These are generated with a Geiger counter and krypton 85, see
http://www.fourmilab.ch/hotbits.

http://www.fourmilab.ch/hotbits


WTF? 54

The gentle reader might wonder what Geiger counters have to do with
randomness.

More precisely, there is a strange and not really well-understood connection
between the purely mathematical notion of randomness (which, by the way, is
rather difficult to define in any halfway satisfactory manner) and physical
processes that seem to involve some intuitive property of “randomness.”

See the notes on the website for more background.



Inverse Congruential Generator 55

If the modulus N is prime one can use multiplicative inverses in ZN . Write

x =
{

0 if x = 0,
x−1 otherwise.

Then we can define a pseudo-random sequence by

f(x) = a x + b mod N

Computing the inverse can be handled by the extended Euclidean algorithm.
Again, it is crucial to choose the proper values for the coefficients.



Quadratic Congruential Generators 56

As one might suspect, one can also use non-linear functions:

f(x) = a · x2 + b · x + c mod N

Again, selecting the right parameters is tricky and requires some care.

More generally one could use some polynomial

f(x) = anxn + an−1xn−1 + . . . a0 mod N

But note that higher degrees are computationally more expensive.
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Factoring Integers 58

There is a factoring method due to John Pollard in 1975 that works well if the
given number has a small factor.

Suppose n is some given non-prime. The idea is to use a pseudo-random
function f to generate a sequence (xn) modulo n and to check if

gcd(xi − x2i, n) > 1

If so, we terminate and return the gcd. Otherwise we terminate in failure when
we reach xi = x2i as in Floyd’s algorithm.



Pollard’s Algorithm 59

x = y = 2; // or some such
d = 1;

while( d == 1 )
x = f(x);
y = f(f(y));
d = gcd( x - y, n );
if( d == n ) return failure;
if( 1 < d ) return d;

This assumes that the gcd can handle negative arguments; if not use |x − y|.



8th Fermat Number 60

Using the simple QCG
f(x) = x2 − 1 mod n

this method produced a huge success story at the time: in 1975 Pollard and
Brent found the factor 1238926361552897 of the 8th Fermat number, in two
hours compute time on a UNIVAC 1100/42.

F8 = 228
+ 1 = 11579208923731619542357098500868

7907853269984665640564039457584007913129639937



But Why? 61

If the sequence generated by f were truly random then by probability theory
one should expect transient and period to be Θ(

√
n), so the algorithm would

terminate after some Θ(
√

n) steps.

But now suppose n has a small divisor m. Since we are using a polynomial f
we can think of tacitly computing the sequence modulo m, with the stopping
condition not equality but equality modulo m: from x = y mod m it follows
that gcd(x − y, n) must be at least m and our algorithm promptly reports a
factor.

Thus we should expect the algorithm to return a correct answer in just Θ(
√

m)
time, a much smaller value.



The Power of Wishful Thinking 62

To the purist, this will sound very disturbing: we pretend there is randomness
where it is clearly absent.
However, experimental results show that the algorithm behaves as the argument
above would suggest. A really precise analysis seems very difficult, though.

Exercise
What happens with the algorithm when n is prime? What if n = pq where p
and q are prime? How could other QCGs f(x) = x2 − c mod n be used?
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