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AN n log n ALGORITHM FOR MNIM ZING STATES IN A FINITE AUTOVATON

John Hopecroft

Stanford University

I ntroduction

Most basic texts on finite automata give algorithms for minimzing the nunber of states in a finite
automaton {1, 2]. However, a worst case analysis of these algorithns indicate that they are n? processes
where n is the nunber of states. For finite automata with large nunbers of states, these algorithms are
grossly inefficient. Thus in this paper we describe an algorithmfor minimzing the states in which the
asynptotic running time in a worst case analysis grows as n log n. The constant of proportionality depends
linearly on the nunber of input synmbols. Clearly the same algorithmcan be used to determine if tw finite
automata are equivalent.

The essence of previously published algorithms was to first partition the states according to their
outputs.  The blocks of the partitions are then repeatedly refined by examining the successor state on a
given input for each state in the block. States whose successor states on a given input are in different
bl ocks are placed in separate blocks. Wen no further refinement is possible, all states in the same block of
the partition can be shown to be equivalent. Consider the exanple in Figure 1. The initial partition is

(1,2,3,4,5)(6) . Since on input 0 , the successor

Input
states of states 1, 2, 3 and 4 are in the first block St ate 0 1 | Qutput
of the partition and the successor of state 5is in —1 2 1 0
the second block, the first iteration refines the 2 > 2 0
partition into the blocks (1,2,3,4)( 5) and (6) i 55 i g
Successive refinements yield (1,2,3)(4)(5) (6) ; 5 6 5 0
(1,2) (3) (4) (5) (6) and (1) (2)(3)(4)(5)(6) - Thus, 6 6 6 !
in this exanple all pairs of states are inequivalent. S,\tjez;(tte
For this exanple it is seen that as many as n

Figure 1

iterations may be required and the total nunber of

steps needed to execute the algorithmif inplenmented in a straightforward fashion on a digital conputer
is ne.

The al gorithm proposed in this paper may also require n iterations but the work per iteration summed
over all iterations yields only nlog n . W illustrate the algorithmby an exanple before specifying it in
detail. Extensive use of list processing is enployed to reduce the conputation time. First the state table
is inverted to obtain the table shown in Figure 2. The states are partitioned according to their outputs
(1,2,3,4,5) (6) . Next a block and an input synbol on which the partition is refined are selected. Assume
the block (6) and input O are selected. The states in each block are further partitioned depending on

whether on input 0 their next state is in block (6) or not. Thus the next partition is (1,2,3,4)(5)(6) .

Note that had we partitioned on the block (1,2,3,4,5) and input O we would have obtained the sane result.



Input !
More generally, once we have partitioned on a bl ock States 0 1 Output
and an input symbol, we need never partition on that 1 - 1 0
bl ock and input symbol again until the block is 2 1 e 0
3 2 3 0
split and then we need only partition on one of
4 3 4 0
the two subblocks. Since the tine needed to 5 4 5 0
partition on a block is proportional to the 6 5,6 6 1
transitions into the block and since we can al ways prs'f\éitgus
select the half with fewer transitions, the total
Figure 2
nunber of steps in the algorithmis bounded by
nlogn.
Formal description of the algorithm
Let A = (S,I,5,F) be a finite automaton where S is a finite set of states, I is a finite set of
i nputs, 5 is a mpping fromS x | into Sand Fc S is the set of final states. No initial state is

specified since it is of no inportance in what follows. The mapping & is extended to SxI* in the usual
manner where I* denotes the set of all finite length strings of symbols froml . States s and t are
said to be equivalent if for each x in I*, 5(s,x) is in Fif and only if &(t,x)is in F .

The algorithm for finding the equivalence classes of S is described below.

Step VseS and aeI construct
5'l(s,a) = [t]5(t,a) = s} .

Step 2. Construct B(1) = F, B(2) = SF and for each a in | and 1 <i < 2 construct
a(i) = {s|seB(1) and 5 Y(s,8) £ §} .

Step . Set k=3

Step 4. VYaeI construct

1} irla@) | < fa(®) |

{21 otherwise

Step . Select a in | and i in L(a) . The algorithm terminates when L(a) = ¢ for each a in |

Step 6. Delete i from L(a)

Step 7. ¥i < k st @ in B(j) with 5(t,a) ea(i) perform steps Ta, Tb,a7c, and 7d.
Step 7a. Partition B(j) into B'(3) = {t|5(t,a) ca(i)} and B'(j) = B(j)-B(j)

Boep Replace B(j) by B (j) and construct B(k) = B'(j) . Construct corresponding a(j)

and a(k) for each a in |



Btepc . YaeI nodify L(a) as follows.

" L(a) U {3} if 3#L(a) and 0 < |a(d)]| < |a(x)|
a) =
L(a) U {k} otherw se

Step 7d. Set k = k+1 .

8tep . Return to Step 5.

Correctness of algorithm

The claimis made that on termination of the algorithmtwo states are equivalent if and only if they are
in the same block. The algorithm nust ternminate since the only tinmes that an index is added to L(a) for
some a in | are in Step 4 which is executed only once and in Step 7c. An index is added at Step 7c only
after a refinement of a block of the partition. Each tinme Step 6is executed, an index is renoved from L(a)
for some a . Thus the algorithm must terminate.

It is easily shownby induction on the nunber of times Step 7a is executed that if s is in B(i) and
t isinB(), i #j , then s is not equivalent tot . Cearly, it is true the first time Step 7ais
executed since only two blocks exist, B(1) containing only final states and B(2) containing only nonfinal
states. Blocks are refined at Step 7a only when successor states on a given input have previously been
shown to be inequivalent.

To see that two inequivalent states cannot be in the same block when the algorithm terninates, assume
that states s and t are in B(i) and that s and t are not equivalent. Wthout |oss of generality,
assume o(s, a is in B(j) and &(t,a) is in B(k) where j £k . (1f &(s,a) and 8(t,a) are in the
same block then there exists a shortest x such that &(s,x) and &(t,x) are in distinct blocks. Cearly
an x exists and hence a shortest x since for some X one or the other of &(s,x) and &(t,x) but not
both is in a final state and each block consists solely of final or solely of nonfinal states. Let a be the
| ast symbol of x and wite x = ya . Then &(s,y) and 5(t,y) are in the same bl ock, 5(s,y) and 8(t,y)
are not equivalent and &(5(s,y),a) and 5(8(t,y),a) are in different blocks. Replace s by &(s,y) and
replace t by &(t,y).) Consider the point at which the block containing &(s,a) and 8(t,a) was
partitioned so that &(s,a) and &(t,a) first appeared in separate subblocks. At that point one of the
two subblocks was placed in L(a) . Wen this subblock is removed from L(a) , the block containing s and
t is partitioned with s and t going into separate subblocks. Thus s and t cannot both be in B(i) ,

a contradiction.

Anal ysis of the running tinme

The running time of the algorithmis clearly dependent on the inplenentation. The algorithm has been
progranmmed in ALGOL. Since the inplenmentation consists of approximately 300 ALGOL statements we shall sinply

indicate how the various steps were inplenented and discuss informally their running tine.



Tlie sets such as 6'l(s,a) , L(a) , etc. were represented by linked lists in suck a way that an item
could be added c- deleted at the beginning of the 1list i~ a fixed number of steps. Vectors were also
maintained to indicate if a state was or was =ot on a gi~:n list. This elinmnates searching a list sinply
to deternine if the itemis on the list and is essentia :n Step 7c. The sets B(i) and a(i) were
represented as doutly linked lists sothat an icvem could oe added or del eted anywhereinthelistinafixed
nunber of steps once the position is given. The structure was such that given a state s, its position in
B(i) and a(i) could be deternmined in a fixed number of steps.

Steps 1, o, and 4 are executed only once and eauire time proportional to the product of the number of
states timez tle numoer of input synbols. Steps 5 throush 8 form a sinple loop. The tine necessary to
traverse the loop for given ain | and i in L(a) is proportional to the nunber of state transitions
on input a terminating on states in B(i) . (To see tiis, note that Steps 5,6 and 8 are finite. In
Step 7w do not need to exanmine B(j) for each j < % |-0 see if there exists a t in B(j) with 8&(t,a)
in a(i) . @Rather we |ook at each state in aii) and then consult the inverse state table to find each t
such that S(t,a) is in a(i) . Each time a new t iz found, the block containing t is located and t
placed or- : iict of states to be split off from the vloci. The block is then placed on a list of blocks
whi ch nave veen refined if it is not already on the list. Finally we go down the list of blocks which have
been refined and actually partition them The nunber of blocks we nust |ook at nust be |ess than the nunber
of state transitions on input a terminating on states in B(i) . The time necessary to actually partition
a block is proportional to the number of states to be split off. \Wen the nunber is summed over all blocks
which are partitioned it adds up to the number of state transitions on input a terminating on states in
B(i) .) TLet & be the constant of proportionality.

Jonsider the time spent in the loop of Step 5 throuzh 8 for a given input synbol a . Assume that at
step 5 the blocks of the partition are B(1),B(2),...,B(m) and that L(a) = {ip,iy . w1} . Let
{im-l’iwg""’im} = {1,2,...,m} -L(a) . The clain is made that the total time spent on traversals of the

loop for which input symbol a is selected in Step 5 until the program ternminates is bounded by

r m
T =k( z a, log a, + Z a. log(a. /2))
1t RIEE o el
Clearly the bound is valid if the algorithm has ternmnated. |f the loop is traversed for an input synbol

other than a , then the tine spent is not included in T . However, since blocks get split and the set

L(a) nodified we nust show that the new value of T , call it T , is less than or equal to the old value
of T . If a block whose index is in L(a) is partitioned, then a termof the formb log b is replaced by
the expression ¢ log ¢ + (b-c) log(b-c) which decreases the value of T . [If a block whose index is not

in L(a) is partitioned, then a termof the formb log b/2 is replaced by the expression
“clog ¢ + (b -¢) log(b -c)/2

where ¢ <b-c . Since ¢ <b/2 and (b-c)/2 < b/2 ,
clog e+ /b-c)log(b-c)/2 <clog b/2 + (b -c)log b/2

< b log b/2 .

ither case T is less than T . Finally, assmer £ 0 and a and some £ in L(a) has been



selected at Step 5. As we showed earlier, the time around the loop is bounded by ka

y - Thus by inducti on,

the total time is bounded by

r
k[az + allog(az/?_) + g_;

b

m
a.. log a + z a, log(a, /2) 1 .
17 Yoo ] K

W nust show that this expression is less than or equal to T . That is, we need show

a, +a, log az/esailog a, .

dearly =, +a, log a2/2 = a,(log a£/2 +log 2 =4 loga, . This conpletes the proof of the claim
The first time Step 5 is executed the fornula for T is bounded by knlog n . Mltiply by the nunber

of input symbols and adding in the tinme for Steps 1 through % yields a total bound proportional to n log n .

Experinmental results and conclusions

In order to obtain timng information, the algorithmwas applied to two classes of finite automata.
Automata in the first class are given by A(n) = ({1,2,. . .,n},{0,1},8,{1}) where 5(1,0) = 8(1,1) = 1 and
8(1,0) = i-1 and &(i,1) =i for 2 <i <n . Automata in the second class are given (for even n) by
B(n) = ({1,2,...,n}, {0,1},8, {i|1 < i, < n/2}) where 5(1,0) = 8(i,1) = n/2 + 2i-1 and

&(n/b+ 1,0) = 8(n/k+ 1,1) = 2i-1 for 1< i < n/k and &(n/2+1,0) = 8(n/2+1i,1) = 2i-1 for

n/2 <i<n. The running times on an IBM 360/67 for the two classes are listed in Table 1.
n A(n) B(n)
. 21 2
100 % 3
1000 5 2 6%
2003 11 % 13 %
Table 1. tinme in seconds

Note that A(n) is the exanple which required n? steps for previous algorithms.

Qur algorithmis particularly suited for A(n) and a detailed analysis shows that the running tine
should grow linearly-with the number of states as the experimental evidence indicates. The worst case for
our algorithmis typified by B(n) in which blocks are always partitioned equally. The running time for
B(n) should grow as n log n for both the current algorithm and for previously published algorithms. The
results seemto indicate that the algorithmis practical for minimzing states in finite automata (or testing

equival ence of finite automata) of up to several thousand states.
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