
CDM
Context-Sensitive Grammars

Klaus Sutner

Carnegie Mellon Universality

70-cont-sens 2017/12/15 23:17

1 Context-Sensitive Grammars

� Linear Bounded Automata

� LBA and Counting

Where Are We? 3

Context-free languages based on grammars with productions A→ α are very
important since they describe many aspects of programming languages and
admit very efficient parsers.

CFLs have a natural machine model (PDA) that is useful e.g. to evaluate
arithmetic expressions.

Properties of CFLs are mostly undecidable, Emptiness and Finiteness being
notable exceptions.

Postfix Calculators 4

Hewlett-Packard figured out 40 years ago the reverse Polish notation is by far
the best way to perform lengthy arithmetic calculations. Very easy to
implement with a stack.

The old warhorse dc also uses RPN.

10 20 30 + *

n

500

10 20 30

f

30

20

10

^

n

1073741824000000000000000000000000000000

Languages versus Machines 5

Why the hedging about “aspects of programming languages”?

Because some properties of programming language lie beyond the power of
CFLs. Here is a classical example: variables must be declared before they can
be used.

begin
int x;
. . .
x = 17;
. . .

end

Obviously, we would want the compiler to address this kind of situation.

Languages versus Machines 6

To deal with problems like this one we need to strengthen our grammars. The
key is to remove the constraint of being “context-free.”

This leads to another important grammar based class of languages:
context-sensitive languages. As it turns out, CSL are plenty strong enough to
describe programming languages—but in the real world it does not matter, it is
better to think of programming language as being context-free, plus a few
extra constraints.

As we will see shortly, though, the associated machines (linear bounded
automata) are quite important in complexity theory.

Context-Sensitive Grammars 7

Definition (CSG)

A context-sensitive grammar (CSG) is a grammar where all productions are of
the form

αAβ → αγβ where γ 6= ε

Some authors also allow S → ε in which case S may not appear on the
righthand side of any production. A language is context-sensitive if it can be
generated by a context-sensitive grammar.

Note the constraint that the replacement string γ 6= ε; as a consequence we
have

α⇒ β implies |α| ≤ |β|

This should look familiar from our discussion of ε-free CFG.

Brute-Force Recognition 8

Lemma

Every context-sensitive language is decidable.

Proof.

Suppose w ∈ Σ? and n = |w|. In any potential derivation (αi)i<N we have
|αi| ≤ n.

So consider the digraph D with vertices Γ≤n and edges α⇒1 β.

Then w is in L if w is reachable from S in D.

2

Of course, the size of D is exponential, so this method won’t work in the real
world.

Needless to say . . . 9

Not all decidable languages are context-sensitive.

Here is a cute diagonalization argument for this claim.

Let (xi)i be an effective enumeration of Σ? and (Gi)i an effective enumeration
of all CSG over Σ (say, both in length-lex order). Set

L = {xi | xi /∈ L(Gi) }

Clearly, L is decidable.

But L cannot be context-sensitive by the usual diagonal mumbo-jumbo.

Example: Counting 10

We know that the language

L = { anbncn | n ≥ 1 }

is not context free. Here is a context-sensitive grammar G for L:

let V = {S,B} and set

S → aSBc | abc
cB → Bc

bB → bb

A typical derivation look like

S ⇒ an+1bc(Bc)n ⇒ an+1bBncn+1 ⇒ an+1bn+1cn+1

Right?

Not so fast . . . 11

The “typical” derivation easily produces a proof that L ⊆ L(G).

But we also need to show that L(G) ⊆ L.

This is a bit harder: we need to show that the productions cannot be abused in
some unintended way to generate other strings.

E.g., the canonical order is not necessary:

S ⇒ aaSBcBc⇒ aaSBBcc

Exercise

Figure out the details.

Example: More Counting 12

We also know that the language

L = {x ∈ {a, b, c}? | #ax = #bx = #cx }

is not context free. But, again, it is easily context-sensitive:

let V = {S,A,B,C} and set

S → S′ | ε
S′ → S′ABC | ABC

XY → Y X for all X,Y ∈ {A,B,C}
A→ a

B → b

C → c

Note that most productions are actually context free. The critical part is the
commutation productions for {A,B,C}.

Closure Properties 13

Theorem

context-sensitive languages are closed under union, concatenation, Kleene star
and reversal.

They are also closed under ε-free homomorphisms.

Proof is straightforward by manipulating the grammar.

Note that arbitrary homomorphisms do not work in this case: they erase too
much information.

Innocent Questions 14

Are CSL closed under intersection?

Are CSL closed under complement?

The answer is Yes in both cases (so this is quite different from context-free
languages).

The proof for intersection has to wait until we have a machine model, and the
proof for complement requires a special and very surprising counting technique
(later).

Normal Form 15

Theorem (Kuroda)

Every context-sensitive grammar can be written with productions of the form

A→ BC AB → CD A→ a

The proof is very similar to the argument for Chomsky normal form for CFG.

Note that the recognition algorithm becomes particularly simple when the CSG
is given in Kuroda normal form: we first get rid of all terminals and then
operate only on pairs of consecutive variables.

Undecidability 16

Recall the trick to produce undecidability with CFGs: encode accepting
computations of a Turing machine as strings

#C0 #C1 # . . . #Cn #

For CFG this requires some treachery (complement plus alternating
configurations), but for CSG there is no problem: we can directly generate all
strings corresponding to valid computations by a context-sensitive grammar. As
a consequence even the most basic question about CSG is undecidable.

Theorem

It is undecidable whether a CSG generates the empty language.

Undecidability Overview 17

x ∈ L L = ∅ L = Σ? L = K L ∩K = ∅

regular Y Y Y Y Y

DCFL Y Y Y Y N

CFL Y Y N N N

CSL Y N N N N

decidable Y N N N N

semi-dec. N N N N N

Standard decision problems for the language classes we have seen so far.

� Context-Sensitive Grammars

2 Linear Bounded Automata

� LBA and Counting

A Machine Model? 19

So far we have have managed to associate language classes with machines:

semidecidable — Turing machines

context free — pushdown automata

regular — finite state machines

The question arises whether a context-sensitive language can be similarly
accepted by some suitable type of machine.

It is clear that we need more memory than for pushdown automata (stacks),
but we cannot allow arbitrary memory (as in Turing machines).

Linear Bounded Automata 20

Definition

A linear bounded automaton (LBA) is a type of one-tape, nondeterministic
Turing machine acceptor where the input is written between special
end-markers and the computation can never leave the space between these
markers (nor overwrite them).

Thus the initial configuration looks like

#q0x1x2 . . . xn#

and the tape head can never leave the block of n consecutive cells.

It may seem that there is not enough space to perform any interesting
computations on an LBA, but note that we can use a sufficiently large tape
alphabet to “compress” the input to a fraction of its original size and make
room.

Digression: Physical Realizability 21

As an aside: this type of compression argument flies in the face of physical
reality.

For example, it was recently demonstrated how to store bits by placing chlorine
atoms on a copper substrate (using a scanning electron microscope). This
produces fantastic densities, the whole Library of Congress would fit into a few
cubic millimeters.

But one cannot store an ASCII symbols instead of a single bit.

Of course, there are lots of other problems: time, space, energy requirements.

The Myhill-Landweber-Kuroda Theorem 22

The development happened in stages:

Myhill 1960 considered deterministic LBAs.

Landweber 1963 showed that they produce only context-sensitive
languages.

Kuroda 1964 generalized to nondeterministic LBAs and showed that this
produces precisely the context-sensitive languages.

Theorem

A language is accepted by a (nondeterministic) LBA iff it is context-sensitive.

Proof 23

First suppose L is context-sensitive via G. The idea is to run a derivation of G
backwards, starting at a string of terminals.

To this end we can use a nondeterministic Turing machine that “randomly”
tries to apply the productions αAβ → αγβ in G backwards.

Since γ 6= ε, we do not need a full Turing machine: a LBA can handle this type
of computation. Essentially, we replace γ by A (given the right context).

We will ultimately reach S iff the original word was in L.

Proof, Cont’d 24

For the opposite direction it is a labor of love to check in great gory detail that
the workings of an LBA can be described by a context-sensitive grammar.

The critical point is that an LBA can overwrite a tape symbol but can not
append new cells at the end (the head never moves beyond the end markers).

2

Note that nondeterminism is critical here: grammars are naturally
nondeterministic and a deterministic machine would have to search through all
possible choices. That seems to require more than just linear space (open
problem, see below).

Digression: Physical Realizability II 25

It was recognized already in the 1950s that Turing machines are, in many ways,
too general to describe anything resembling the type of computation that was
possible on emerging digital computers.

The Rabin-Scott paper was one radical attempt to impose a radical constraint
on Turing machines that brings them into the realm of “feasible” computation.

Myhill’s introduction of LBA is another attempt at constructive restrictions. As
we now know, LBAs are still a rather generous interpretation of the notion of
feasible computation; real, practical algorithms need further constraints.

Still, it is a perfectly good model and there are many interesting problems that
fit perfectly into this framework.

Intersection Closure 26

Theorem

CSL are closed under intersection.

Proof.

Given two LBAs Mi for Li. we can construct a new LBA for L1 ∩ L2 by using
a 2-track tape alphabet (recall our synchronous transducers).

The upper track is used to simulate M1, the lower track is used to simulate M2.

It is easy to check that the simulating machine is again a LBA (it will sweep
back and forth over the whole tape, updating both tracks by one step on the
way).

2

Why Not CFG? 27

In essence, the argument says that we can combine two LBAs into a single one
that checks for intersection. This is entirely similar to the argument for FSMs.

Burning Question: Why can’t we do the same for PDAs?

Because we cannot in general combine two stacks into a single one (though
this works in some cases; the stack height differences need to be bounded).

Quantified Boolean Formulae 28

Definition

A quantified Boolean formula (QBF) is a formula consisting of propositional
connectives “and,” “or” and “not,” as well as existential and universal
quantifiers.

If all variables in a QBF are bounded by a quantifier then the formula has a
truth value: we can simply expand it out as in

∃xϕ(x) 7→ ϕ(0) ∨ ϕ(1)

∀xϕ(x) 7→ ϕ(0) ∧ ϕ(1)

In the end we are left with an exponential size propositional formula without
variables which can simply be evaluated.

QBF 29

Note that many properties of propositional formulae can easily be expressed
this way. For example, ϕ(x1, x2, . . . , xn) is satisfiable iff

∃x1, . . . , xn ϕ(x1, x2, . . . , xn) is valid

Likewise, the formula is a tautology iff

∀x1, . . . , xn ϕ(x1, x2, . . . , xn) is valid

Claim

Validity of QBF can be checked by a deterministic LBA.

Proof 30

Consider, say,

∀x1, . . . , xn ∃ y1, . . . , ym ϕ(x,y)

To check validity we use two loops, one counting from 0 to 2n − 1 for x and
another counting from 0 to 2m − 1 for y.

The machine checks that for each value of x there exists a y that satisfies the
quantifier-free part.

Of course, the running time is exponential — but not much space is required.

QBF Solvers 31

http://qbf.satisfiability.org/gallery/

There is a lot of current research on building powerful QBF solvers.

http://qbf.satisfiability.org/gallery/

� Context-Sensitive Grammars

� Linear Bounded Automata

3 LBA and Counting

Kuroda’s Problems 33

Kuroda stated two open problems in his 1964 paper:

Is nondeterminism in LBA really needed?

Are context-sensitive languages closed under complements?

The first problem is still open and seems very difficult.

But the second one has been solved.

Immerman-Szelepsényi 34

Kuroda’s second problem was solved independently by two researchers in the
late 1980s.

Theorem (Immerman-Szelepsényi, 1988)

Context-sensitive languages are closed under complement.

The easiest way to prove this is to consider a seemingly unrelated and harmless
graph problem first.

Problem: Graph Reachability
Instance: A digraph G, two nodes s and t.
Question: Is there a path from s to t?

Of course, this can easily be solved in linear time using standard graph
algorithms.

Prototype Reachability Algorithm 35

The strategy is clear, but there is a problem. We build the set R ⊆ V of
vertices reachable from s in G in stages.

Let’s say (u, v) ∈ E requires attention if u ∈ R but v /∈ R.

R = { s };

while(some edge (u,v) requires attention)

add v to R;

return t in R;

DFS and BFS are both instances of this strategy. Alas, these algorithms require
linear space: we have to keep track of R.

How About Logarithmic Space? 36

Any algorithm using logarithmic space cannot in general keep track of the set
of all reachable vertices, so this seems tricky.

It works, though, if we allow nondeterminism. Let n = |V |.

// path guessing
` = 0
x = s
while ` < n− 1 do

if x = t then return Yes
guess an edge (x, y)
`++
x = y

return No

Works! 37

This works in the following sense:

If there is a path s to t, then, making the right guesses, the algorithm can
return Yes.

If there is no path, then the algorithm always returns No.

So there may be false negatives, but there can never by false positives.

So, the symmetry between true and false is broken. But we already know that
this turns out to be a good thing: nondeterministic finite state machines work
that way. They can be made deterministic, but at a potentially exponential
cost.

And semi-decision algorithms cannot be fixed at any cost.

Non-Reachability 38

How about the opposite problem: t is not reachable from s?

Problem: Graph Non-Reachability
Instance: A digraph G, two nodes s and t.
Question: Is there no path from s to t?

Note that for this version nondeterminism seems totally useless: what exactly
would we guess? A non-path? A unicorn???

It is a major surprise that Non-Reachability can also be handled in
nondeterministic logarithmic space, though the logical complexity of the
algorithm is substantially higher.

Counting Reachable Points 39

Let

R = {x ∈ V | exists path s→ x }

be the set of vertices reachable from s (the weakly connected component of s).

From the perspective of nondeterministic logarithmic space, R can be
exponentially large (it may have cardinality up to n). But, it suffices to know
just its cardinality to determine non-reachability.

Claim

Given the cardinality r = |R|, we can solve Non-Reachability in
nondeterministic logarithmic space.

Deciding Non-Reachability 40

// non-reachability algorithm
i = 0
forall x 6= t in V do // length-lex order

guess path s→ x
if path found
then i++

return i == r

This works since i = r means that all reachable vertices are different from t.

Nice, but useless unless we can actually compute r.

Onion Trick 41

Instead of trying to compute r directly, let

R` = {x ∈ V | exists path s→ x of length ≤ ` }

and set r` = |R`|.

Obviously r0 = 1 and rn−1 = r.

So we only have to figure out how to compute r`, given r`−1.

Counting 42

// inductive counting algorithm
// inputs `, ρ; output ρ′

ρ′ = 0
forall x in V do

b = 0 // increment 0 or 1
c = 0 // path counter
forall y in V do

guess path s→ y of length < `
if path found
then c++
if y = x or (y, x) ∈ E
then b = 1

assert c == ρ // all paths found
ρ′ = ρ′ + b

return ρ′

Quoi? 43

Suppose ρ is the correct value of r`−1.

Since we check that c = ρ, we know that all paths s→ y have been guessed
correctly.

But then we have properly found and counted all paths of length at most `: we
just have to add one more edge. Hence, the output ρ′ is indeed r`.

Note that the algorithm requires only storage for a constant number of vertices,
so logarithmic space suffices, plus nondeterminism to guess the right path from
s to y.

Nondeterministic Functions? 44

The counting algorithm is heavily nondeterministic: we have to guess multiple
paths s→ y (which would never work out if we were to flip a coin to make
nondeterministic decisions).

But note the assert statement: if we make a mistake, the whole computation
crashes. This means in particular that no function value is produced on any of
these branches.

The branches where all the guesses are correct all produce the exactly same
value ρ.

Back to Immerman-Szelepsényi 45

The theorem now follows easily.

For suppose M is some LBA (nondeterministic!) which accepts some CSL L.
We would like to build another LBA N that accepts Σ? − L.

Consider some input x ∈ Σ`. Clearly the number of configurations of M on x
is bounded by n = c` for some constant c > 1. Note that n also bounds the
running time of M (remove loops).

So we can consider the graph of all such configurations with s the initial
configuration for input x and t the accepting configuration, and edges given by
the one-step relation for M .

The construction for Non-Reachability from above can then be handled by
another LBA N , done.

Full Immerman-Szelepsényi 46

In a while, we will introduce space complexity classes: things that can be done
using some amount s(n) of space. Then we have:

Theorem

For any reasonable function s(n) ≥ logn we have
NSPACE(s(n)) = co−NSPACE(s(n)).

In particular NL = co−NL and NSPACE(n) = co−NSPACE(n).

For this version one considers graphs determined by the computations of a
nondeterministic Turing machine (vertices are instantaneous descriptions, edges
correspond to the one-step relation).

YABA 47

Yet another Boolean algebra: the context-sensitive languages form a Boolean
algebra, just like the regular and decidable ones.

But the following is somewhat surprising:

Theorem

The Boolean algebras of regular, context-sensitive and decidable languages are
all isomorphic.

The proof requires a bit of lattice theory; we’ll skip.

Application: Determinization 48

For an NFA A = 〈Q,Σ, δ; I, F 〉 , recall that pow(A) denotes the accessible
part of the power automaton produced by the Rabin-Scott determinization
procedure.

We have 1 ≤ |pow(A)| ≤ 2n where n = |Q|, and we have examples that show
that the upper bound is hard, even when Q = I = F .

Now consider the following problem:

Problem: Powerautomaton Reachability
Instance: An NFA A and a state set P ⊆ Q.
Question: Is P in pow(A)?

Powerautomaton Reachability can be “solved” by an LBA: The LBA can guess
a string x ∈ Σ? and verify that δ(I, x) = P .

Note that we have to guess the witness x = x1x2 . . . xm one symbol at a time:
m may be exponentially larger than n.

Surprisingly, by Immerman-Szelepsényi, the corresponding non-reachability
problem can also be solved by an LBA: we can “guess” in linear space that
P ⊆ Q is not part of pow(A).

This is another case where your intuition might suggest otherwise: what’s there
to guess?

Size Matters 50

Similarly the following problem can be solved by a LBA:

Problem: Powerautomaton Size
Instance: An NFA A and a bound B.
Question: Does pow(A) have size at least B?

The LBA can

guess B-many subsets P ⊆ Q, say, in lexicographic order, and

guess a string x ∈ Σ? and verify that δ(I, x) = P .

Again by Immerman-Szelepsényi the corresponding problems |pow(A)| ≤ B,
|pow(A)| = B, |pow(A)| 6= B can all be solved by an LBA.

	Context-Sensitive Grammars
	Linear Bounded Automata
	LBA and Counting

