
CDM

Automatic Sequences

Klaus Sutner

Carnegie Mellon University

70-auto-seq 2017/12/15 23:20

Outline 2

1 Automatic Words

2 Decimation and Kernels

3 Uniform Morphisms

4 State Complexity

Generating Infinite Words 3

We can think of an infinite word A ∈ Γω as a function A : N→ Γ .

Words where this function is computable are particularly interesting.

Pushing things one step further: how about words where the function can be
computed by a finite state machine?

Note that we are interested in individual words here, not the recognition of sets
of words as in the setting of Büchi automata. We will not scan the word but
instead study machines that on input n output A(n). Of course, we need to
explain exactly how these machines work.

Base k Representations 4

The input alphabet will be a digit alphabet of the form

Σk = {0, 1, . . . , k − 1}

Recall the standard base k (or radix k) representation of a natural number: the
leading digit is the MSD:

repk(n) = drdr−1 . . . d0 where n =
∑
i≤r

diB
i, dr 6= 0

For the sake of completeness let us fix the empty word as the representation for
zero (though the letter 0 also makes sense).

Similarly, given an arbitrary word w over Σk, we will denote its value in base k
by val(w). Note that val(0w) = val(w), so this notation system is not unique.

Reverse Base k Representations 5

Alternatively, we can consider the leading digit to be the LSD, leading to
reverse base k (or reverse radix k) notation:

rrepk(n) = drdr−1 . . . d0 where n =
∑
i≤r

diB
r−i, dr 6= 0

Again the empty word represents 0 and we write rval(w) for the numerical
value of a word w ∈ Σ?k.

Proposition

rep(n)op = rrep(n)

Since regular languages are closed under reversal one may suspect that both
notation systems will produce the same results (but see the section on state
complexity below).

Partitioned Automata 6

Since we want to determine A(n) given (the representation of) n we need to
consider a slight generalization of ordinary DFAs: machines with multiple final
state sets.

Definition

A partitioned deterministic finite automaton (PDFA) is an automaton of the
form

M = 〈Q,Σ, δ; q0,F 〉

where 〈Q,Σ, δ 〉 is a deterministic and complete transition system, q0 ∈ Q an
initial state and F = (Fa

∣∣ a ∈ ∆) is a partition of Q. The cardinality of ∆ is
the order of M .

It will be convenient to think of ∆, the coordinates of F , as an alphabet.

We are here mostly interested in the case Σ = Σk.

Behaviors 7

Note that a PDFA of order 2 is just a plain DFA. One may expect the
machinery of behaviors and quotients to carry over.

For a ∈ ∆ the a-behavior of a state p is

JpKa = {x ∈ Σ? | δ(p, x) ∈ Fa }

The behavior of p is the vector (JpKa
∣∣ a ∈ ∆).

In a slight abuse of terminology, we define the language of M is

L(M) = Jq0K ⊆ (Σ?)|∆|

The automaton is reduced if its states all have distinct behavior.

Minimal PDFAs 8

As with ordinary DFAs we are interested in the smallest equivalent (accepting
the same language) PDFA.

Theorem

For every PDFA there is an equivalent one that is accessible and reduced.
Moreover, this PDFA is unique up to isomorphism.

We will refer to this automaton as the minimal PDFA.

Note that the minimal PDFA can be computed using, say, Hopcroft’s algorithm
as in the order 2 case.

The Function Angle 9

On occasion it is more convenient to think of a PDFA as a weak type of
transducer that takes values in ∆.

More precisely, we can associate a function F : Σ? → ∆ with M via

F (x) = a ⇐⇒ δ(q0, x) ∈ Fa.

Note that unlike with general transducers we only evaluate the last state in the
computation of M on x; the output of F is a single letter in ∆ rather than a
word.

Automatic Words 10

Definition

An infinite word A over alphabet ∆ is k-automatic if there exists a PDFA M
over alphabets Σk and ∆ such that for all w ∈ Σ?k:

δ(q0, w) ∈ FA(rval(w))

We will say that M generates A to distinguish this situation from other forms
of acceptance of infinite words.

Thus, our machines operate on reverse base k representations. This is
somewhat arbitrary but will be convenient later in our discussion of kernels.

Zeros, LSD and MSD 11

Note that we allow for trailing zeros; restricting w to rrepk(n) would seem to
make as much sense.

Also, we might as well consider ordinary base k representations where the first
digit is the MSD, with or without leading zeros.

As we will see, none of these choices affect our definition: we always obtain the
same class of automatic words.

Robustness 12

Theorem

Let A be an infinite word. The following are equivalent:

A is k-automatic,

A is generated by a PDFA using base k notation,

A is generated by a PDFA using base k notation and admitting leading
zeros,

A is generated by a PDFA using reverse base k notation without trailing
zeros.

Leading/trailing zeros are easy to deal with, but the switch to standard base k
is more interesting.

Reversal 13

Since rrepk(n) = repk(n)op we need to deal with reversal.

Suppose M is an accessible PDFA. We will show how to construct the minimal
PDFA M op for the (component-wise) reversal of L(M).

Recall Brzozowski’s result that for order 2 this can be done by applying reversal
and determinization: M op is isomorphic to det(rev(M)).

We can generalize this construction to PDFAs as follows.

The General Case 14

Write

M = 〈Q,Σ,∆, δ, q0,F 〉

for the original PDFAs and set

Ma = 〈Q,Σ, δ; q0, Fa 〉 for x ∈ ∆

M ′a = det(rev(Ma))

M ′ =
⊕
a∈∆

M ′a

Attach a partition to M ′ by setting

F ′a = {P | q0 ∈ Pa }

The Minimal PDFA for Standard Base k 15

Theorem

The PDFA M ′ is minimal and isomorphic to M op.

Proof. First note that by construction L(M ′) = L(M)op.

A simple induction shows that each state P = δ′(F , x) of M ′ forms a partition
of Q, so suppose that P 6= R, say, Pa 6= Ra.

We may safely assume that p ∈ Pa −Ra.

But M is accessible, so δ(q0, x) = p for some word x. It follows that xop lies in
the a-behavior of P but not of R.

Hence M ′ is both accessible and reduced.

2

Example: Binary Words 16

As already mentioned, in the special case where

∆ = 2 = {0, 1}

our PDFAs are essentially just ordinary DFAs where F = F1.

The automaton then recognizes the set of positions, written in reverse base k,
where the sequence is 1.

Hence every binary regular language that is well-behaved with respect to
trailing zeros gives rise to a binary automatic word.

Prouhet-Thue-Morse Word 17

The PTM word T = (tn) is a binary word defined by

t0 = 0

t2n = tn

t2n+1 = tn

Here x denotes bitwise complement.

For example, the first 64 bits of T are

0110100110010110100101100110100110010110011010010110100110010110

Iteration 18

Here is an alternative description of the PTM word. Consider the following
sequence of binary words:

T0 = 0

Tn+1 = TnTk

Thus Tn+1 is obtained from Tn by applying the map µ(x) = xx.

Since Tn is a proper prefix of Tn+1 this sequence must have a limit S ∈ 2ω.
Moreover, S must be a fixed point under µ. But then S satisfies the same
recurrence equations as T , so S = T .

Proposition

The PTM word T is the limit of the Tn.

Digit Sums 19

Here is yet another description of the PTM word, one that shows that the word
is indeed 2-automatic.

Recall the binary digit sum of a natural number n:

ds(n) = number of 1’s in the binary expansion of n

Proposition

tn = ds(n) mod 2

Proof. ds(2n) = ds(n) and ds(2n+ 1) = ds(n) + 1 2

� Automatic Words

2 Decimation and Kernels

� Uniform Morphisms

� State Complexity

Decimation 21

Definition

Let A : N→ Γ be an infinite word. Given a stride s ≥ 1 and on offset d ≥ 0
we can define the decimation of A with respect to s and d by

A[s, d](i) = A(s · i+ d)

Example

For the PTM word T we have T [2, 0] = T but T ′ = T [2, 1] 6= T . Moreover,
T ′[2, 0] = T ′ and T ′[2, 1] = T .

A Right Action 22

We can think of decimation as a right action operating on Γω.

Proposition

The operation ∗ defined by

[s, d] ∗ [s′, d′] = [ss′, sd′ + d]

induces a monoid structure on N+ × N with neutral element [1, 0]. We refer to
this monoid as the decimation monoid.

The algebraically inclined will recognize this monoid as a semidirect product of
the multiplicative monoid on N+ and the additive monoid on N.

Proposition

The decimation monoid naturally acts on the right on Γω.

Recovering Letters 23

Let 0 ≤ n < ki. Then

A(n) = fst(A[ki, n])

Thus, we can recover the letters of the word from the first letters of the various
decimations.

This is particularly interesting when the total number of these decimations is
finite.

The k-Kernel 24

Definition

The k-kernel of a word A ∈ Γω is defined by

Kerk(U) = {A[ki, j] | 0 ≤ i, 0 ≤ j < ki }

As we have seen, the 2-kernel of the PMT word T consists of T and T [2, 1].

Thus, the 2-automatic word T has a finite 2-kernel (don’t get distracted by the
fact that kernel actually has cardinality 2). Could this be coincidence?

Finite Kernels 25

Theorem

A sequence is k-automatic if, and only if, its k-kernel is finite.

Before we give a proof, consider a PDFA M generating a k-automatic sequence
A.

For the sake of this argument, let us interpret the behavior JpK of a state p in
M to be the word generated with p as the initial state. Then we have

Jδ(p, d)K = JpK[k, d]

To see this, recall that M is working on LSD-first representations of numbers.

Word Action 26

Correspondingly we can define a right action of Σ?k on Γω by

U [w] = U [k|w|, rval(w)]

Thus
Jδ(q0, w)K = A[w]

by induction on w.

Thus the states in M correspond to the decimations of A with strides ki.

Proof (of theorem) 27

First assume A is k-automatic via a PDFA M on m states. Choose a transfer
sequence xp for every state p in M . As we have seen, every kernel element B is
of the form B = A[w] for some word w. But then B = A[xδ(q0,w)] and the
kernel has cardinality at most m.

For the opposite direction consider the finite kernel K of A. Define a PDFA M
by

〈K,Σk, δ, A,F 〉

where δ(B, a) = B[a] and Fa = {B | fst(B) = a }. 2

� Automatic Words

� Decimation and Kernels

3 Uniform Morphisms

� State Complexity

Uniform Morphisms 29

Since kernels naturally correspond to Moore automata generating automatic
words using reverse base k representations, the question arises whether there is
some natural combinatorial characterization of automaticity that is based on
standard base k representations. Voila.

A morphism µ : Γ? → Γ? is k-uniform if |µ(a)| = k for all a ∈ Γ. µ is
extensible if there is a letter a ∈ Γ such that µ(a) = au.

Note that every extensible morphism must have a fixed point:

A = a uµ(u)µ2(u)µ3(u) . . .

If the morphism is also k-uniform then an is mapped to the block
aknakn+1 . . . akn+k−1 = µ(an) under µ.

Morphisms and Automaticity 30

Theorem

A sequence is k-regular if, and only if, it is the image of a fixed point of a
k-uniform morphism under an alphabetic substitution.

Proof.

Let µ : Γ→ Γk be a k-uniform morphism with fixed point A and σ : Γ→ Σk
a substitution.

We have to show that B = τ(A) is k-automatic. Define a PDFA by using Γ as
state set:

M = 〈Γ,Σk, δ, a,F 〉

where δ(p, i) = µ(p)i (assuming 0-indexing) and Fa = σ−1(a).

An easy induction shows that δ(a, repk(n)) = A(n).

Proof, contd. 31

For the opposite direction assume we have a PDFA

M = 〈Q,Σk, δ, q0,F 〉

that generates a word A ∈ ∆ω. We may safely assume that δ(q0, 0) = q0.

We use Q as alphabet and define the morphism µ : Q→ Qk by

µ(p) = δ(p, 0)δ(p, 1) . . . δ(p, k − 1) ∈ Qk

Define the substitution τ by τ(p) = a ⇐⇒ p ∈ Fa.

Then A = τ(limµi(q0)).

� Automatic Words

� Decimation and Kernels

� Uniform Morphisms

4 State Complexity

State Complexity 33

We can use the size of the minimal PDFA generating a k-automatic word as a
measure of its complexity.

Definition

For any k-automatic sequence A we refer to the number of states of the
minimal PDFA generating A as the state complexity of A.

Proposition

The state complexity of a k-automatic word is the size of its k-kernel.

Exponential Gap 34

Recall that we use reverse base k as the default representation.

As we have seen, there is also a minimal PDFA M op that generates A using
standard base k. We refer to the number of states of M op as the state
co-complexity of A.

As we have seen, complexity and co-complexity are exponentially related.

Alas, there may indeed be an exponential gap between the two measures:

Example

Consider the binary word Ar defined by the language

0?12?12r10?

Then the state complexity of Ar is 2r+2 + 1, but the co-complexity is r + 3.

Computing State Complexity 35

Suppose we are given a k-automatic word A. How can we compute its state
complexity and the corresponding minimal PDFA?

Of course, this depends greatly on the representation of A.

For the time being, let us suppose we can directly manipulate infinite words. In
particular we need to be able to compute decimations A[ki, j] and check them
for equality.

Then we can compute the kernel of A and actually the minimal PDFA using
the standard closure algorithm: close {A} under the operations X 7→ X[k, j],
0 ≤ j < k.

The Kernel Algorithm 36

// generate kernel

K = {A};

set A active;

while(some active B remains)

deactivate B;

foreach j < k do

X = B[k,j];

if(X notin K)

add X to K;

set X active;

else

transition (B,j,Y);

Initial Segments 37

Again, there are only two non-logical operations in the algorithm:

decimation (to compute X from B),

equality testing (to check if X is in K)

But what if we start with a finite prefix α < A rather than A itself?

Decimation extends to an operation over finite words in the obvious way.
However, the length of the prefix shrinks by a factor of k at each step

To test equality we compare prefixes: x =p y if x v y or y v x. Thus, the
shorter word has to be a prefix of the longer.

Note that α, β < A implies α =p β.

Approximations 38

For α < A we have α[w] < A[w], but it may well happen that α[w] =p α[v]
when in fact A[w] 6= A[v].

Running the kernel algorithm with these modified non-logical operations will
thus in general produce an under-approximation, we may obtain false identities.

The question then is: how long a prefix of A is required to produce the actual
kernel?

More precisely, how long does the prefix have to be in order to

determine the size of the kernel,

determine the minimal PDFA.

Approximation Theorem 39

Theorem

Let A be k-automatic with state complexity m. The prefix of length k2m−3 of
A suffices to determine the state complexity, and the prefix of length k2m−2

suffices to determine the minimal PDFA. Moreover, both bounds are tight.

Proof. Suppose the k-kernel of A is K = {A = A1, . . . , Am}.

There are witnesses vi ∈ Σ?k of length at most m− 1 such that Ai = A[vi].

Moreover, for i 6= j there are discriminating words wi,j of length at most m− 2
such that fst(Ai[wi,j]) 6= fst(Aj [wi,j]).

It follows that the kernel algorithm from above will produce correct number of
kernel elements given a prefix of length k2m−3. To obtain the whole PDFA we
need the first k2m−2 letters.

Proof, contd. 40

To see that the bounds are tight consider the regular languages

L1 = {x ∈ 2? | #1x = r (mod r + 1) }

L2 = {x ∈ 2? | #1x = r (mod r + 2) }

L3 = {x ∈ 2? | #1x = r }

and write A1, A2 and A3 for the the corresponding binary words.

A1 has state complexity r + 1 and A2 has state complexity r + 2 but they
agree on their first 22m−3 − 1 bits.

Words A2 and A3 both have kernels of size m = r + 2 but distinct PDFAs, yet
they agree on their first 22m−2 − 1 bits. 2

Summary 41

There are automatic sequences.

	Automatic Words
	Decimation and Kernels
	Uniform Morphisms
	State Complexity

