
CDM

Relations

Klaus Sutner

Carnegie Mellon University

30-relations 2017/12/15 23:22

1 Relations

� Operations and Properties

� Orders

� Equivalence Relations

� Closures

Relations 3

We have seen how to express general concepts (or properties) as sets: we
form the set of all objects that “fall under” the concept (in Frege’s
terminology). Thus we can form the set of natural numbers, of primes, of
reals, of continuous functions, of stacks, of syntactically correct
C-programs and so on.

Another fundamental idea is to consider relationships between two or
more objects. Here are some typical examples:

divisibility relation on natural numbers,

less-than relation on integers,

greater-than relation on rational numbers,

the “attends course” relation for students and courses,

the “is prerequisite” relation for courses,

the “is a parent of” relation for humans,

the “terminates on input and produces output” relation for programs
and inputs and outputs.

Binary Relations 4

Let’s focus on the binary case where two objects are associated, though
not necessarily from the same domain.

The unifying characteristic is that we have some property (attribute,
quality) that can hold or fail to hold of any two objects from the
appropriate domains.

Standard notation: for a relation P and suitable objects a and b write
P (a, b) for the assertion that P holds on a and b.

Thus we can associate a truth value with P (a, b): the assertion holds if a
and b are indeed related by P , and is false otherwise.

For example, if P denotes the divisibility relation on the integers then
P (3, 9) holds whereas P (3, 10) is false.

Later we will be mostly interested in relations where we can effectively
determine whether P (a, b) holds, but for the time being we will consider
the general case.

Implementation 5

Following our program of representing all important notions in terms of
sets, here is a definition that expresses relations as sets.

Definition

A binary relation ρ from A to B is a subset of A×B.

A is the domain of ρ, and B is the codomain of ρ.

We write RelA,B for the collection of all relations from A to B.

Notation

We will often write ρ : A→ B instead of ρ ⊆ A×B.

Also, it is customary to use infix notation x ρ y or prefix notation ρ(x, y)
instead of the set-theoretic (x, y) ∈ ρ.

For example, the standard order on the naturals will be indicated by
2 < 5 rather than <(2, 5).

Square Relations 6

An important special case arises when the domain and codomain are the
same.

Definition

A square relation (or an endorelation) is a binary relation with the same
domain and codomain. The domain is called the carrier set or underlying
set of the relation.

We write RelA for the collection of square relations on A. On occasion,
we will simply refer to these relations as binary relations on A.

Example

The standard order relation < on the natural numbers is a square relation.

Typical counterexamples: the relation “r is a root of polynomial p(x)” or
“string s is an element of stack S”.

Relations as Boolean-valued Functions 7

Our definition is the standard one, but note that we could also represent
a relation by a map

A×B → {ff, tt}

that associates pairs of objects with truth values. In other words, we
identity a relation with its characteristic function. This is somewhat closer
to common usage in programming languages and also has the advantage
that we can draw pictures, at least for reasonably small domains.

Suppose ρ is a relation on [n] (or, more generally, a finite set of size n).
We interpret ρ as a Boolean matrix, a 2-dimensional, n by n array
R : [n]× [n]→ B of Booleans such that

i ρ j ⇐⇒ R[i, j] = tt.

On occasion, these picture give some insight into properties of the
relation.

A Random Relation 8

Here is the picture for a “random” relation ρ on [10].

Of course, ρ is far from random, in fact

x ρ y ⇐⇒ x 6= y ∧ (y + 1 | x ∨ x+ 5 | y)

Relations as Set Functions 9

Another way to think about ρ ⊆ A×B is as a set-valued map

R : A→ P(B)

that associates every object in the domain with a set of objects in the
codomain in the obvious way:

R(a) = { b ∈ B | a ρ b }.

E.g., for the last relation we obtain

a R(a) a R(a)
1 {6} 6 {1, 2, 5}
2 {1, 7} 7 {6}
3 {2, 8} 8 {1, 3, 7}
4 {1, 3, 9} 9 {2, 8}
5 {4, 10} 10 {1, 4, 9}

Visualization 10

This “array of lists” representation is very useful in a number of
algorithms.

Moreover, it can be visualized by a “shoelace” picture where we plot A in
the left column, B in the right and connect a with b by a line if a ρ b.

The following picture is for the relation ρ from above.

Graphs 11

Here is yet another way to think about a square relation ρ ⊆ A×A.

Definition (Directed Graphs)

A directed graph (or digraph) is a structure G = 〈V,E〉 where

V is a set of vertices (or nodes, points)

E ⊆ V × V is a set of edges (or arcs, lines)

Edges are usually written as ordered pairs (u, v): u ∈ V is the source,
and v ∈ V the target of the edge. Of course, a digraph is logically the
same as a binary relation, except that the carrier set has been spelled out
explicitly.

Why Bother? 12

Because graph theory is an independent field of study, and historically
has produced different results than the study of binary relations. Recall:
Thinking about a problem just the right way is crucial in CS.

Most notably, the vertices and edges in a graph are often labeled. In
particular edge labels are very important in automata theory.

Another important difference is that researchers in graph theory have
spent considerable time and effort on finding ways to represent graphs as
sets of points in some suitable geometric space.

For example, we might use points in the plane or in 3-space, with edges
indicated by lines or curves.

Graph Layouts 13

Identifying points and edges with geometric constructs is very important
in visualization – but it is very hard to do right by algorithm (and also
difficult to do by hand if the graphs are large).

This particular layout was generated automatically.

Caveat Emptor 14

Careful, though. The drawing represents the graph, but it is by no means
canonical: there are many alternative ways to draw the same graph.

Yet Another . . . 15

Another picture for the same graph.

Divisor Lattice 16

Careful selection of the vertex coordinates can help to convey a lot of
information about the structure of the relation. The next picture was
constructed painstakingly by hand.

30

6 10 15

2 3 5

1

This is the skeleton of divisibility on the divisors of 30.

And Automatic 17

Here is the automatically generated picture for the divisor lattice of
148176.

Special Relations 18

We focus on square relations on ground set A:

Definition

IA = { (x, x) | x ∈ A }, the identity or diagonal relation.

UA = A×A, the universal relation.

∅A = ∅, the empty relation.

Exercise

What would the pictures for these relations look like in the various
models above?

Exercise

Are there any other natural relations on A that one might reserve special
notation for? Why?

Counting Relations 19

Lemma

If |A| = n and |B| = m, then there are 2nm relations from A to B.

Proof. The collection of all relations from A to B is simply the
powerset of A×B. The latter has size mn, and our claim follows. 2

Another way to think about this: we can represent each relation ρ by an
n by m Boolean matrix. There are n ·m bits, each can be on or off: 2nm

possibilities.

This result also holds in the infinite case (but requires a little cardinal
arithmetic to state and prove).

Exercise

Count relations based on the set-valued function representation.

� Relations

2 Operations and Properties

� Orders

� Equivalence Relations

� Closures

Comparing Relations 21

Since relations express properties (of pairs of objects) it is natural to
consider logical connections between them.

Definition

Let ρ and σ be two relations from A to B. ρ is finer than σ (or σ is
coarser that ρ) if x ρ y implies x σ y.

In symbols:
ρ v σ

If we think of relations as subsets of the Cartesian product A×B this
simply says that ρ ⊆ σ. Of course, most relations are not comparable in
this sense: neither one will be finer than the other.

Exercise

Which of the knight’s move relations should be expect to be finer than
another? Look at the pictures, but don’t rely on them.

Boolean Operations on Relations 22

Definition

Let ρ and σ be two relations from A to B.

The join of ρ and σ is defined by x (ρ t σ) y ⇐⇒ x ρ y ∨ x σ y.

The meet of ρ and σ is defined by x (ρ u σ) y ⇐⇒ x ρ y ∧ x σ y.

The negation or complement of ρ is defined by x ρ− y ⇐⇒ ¬x ρ y.

Note that negation is an involution: ρ−− = ρ.

Example

Consider the usual order relations on N. Then

≤ = < t IN

< = ≤ u I−N

Set Interpretation 23

If we think of relations from A to B as subsets of the Cartesian product
the Boolean operations on relations translate into Boolean operations on
sets.

ρ t σ = ρ ∪ σ
ρ u σ = ρ ∩ σ
ρ− = A×B − ρ

But note that this is a representation issue: if we were to implement the
relations as digraphs or Boolean matrices things work out differently.

Exercise

Explain negation ρ− in terms of v.

Converse and Composition 24

Definition

Let ρ : A→ B be a relation. The converse of ρ is a relation from B to
A defined by

x ρc y ⇐⇒ y ρ x.

Thus the domain/codomain of ρc is the codomain/domain of ρ. Don’t
confuse this operation with complement.

Note that the converse operation is an involution: (ρc)
c
= ρ.

In the set-theoretic interpretation we simply reverse the pairs:

ρc = { (y, x) | (x, y) ∈ ρ }

Clearly, ρ is symmetric iff ρc = ρ.

The converse is also written ρ−1 on occasion, the same notation used for
inverse functions. We will avoid this notation since the converse of any
relation ρ is always well-defined, the inverse for functions is not.

Exercise

Show that (ρ u σ)c = ρc u σc.

Direct Product 26

Definition

Let ρ : A→ A and σ : B → B be two relations. Their direct product
ρ× σ is a relation from A×B to A×B defined by

(a, b) ρ× σ (a′, b′) ⇐⇒ a ρ a′ ∧ b σ b′.

This operation is also called the tensor product or even the Kronecker
product. The reason for the latter terminology is that

bm(ρ× σ) = bm(ρ)⊗ bm(σ).

P5 × P4

Kronecker Product 28

Suppose we have an n×m matrix A and an n′ ×m′ matrix B over some
suitable algebraic structure.

Their Kronecker product is the nn′ ×mm′ matrix C = A⊗B defined by
(we assume 0-indexing):

C(i, j) = A(i div n, j div m) ·B(i mod n′, j mod m′)

For example, for A 2× 2 and B 3× 3 we get a 6× 6 matrix consisting of
4 blocks:

(
a0,0B a0,1B
a1,0B a1,1B

)
=


a0,0b0,0 a0,0b0,1 a0,0b0,2 a0,1b0,0 a0,1b0,1 a0,1b0,2
a0,0b1,0 a0,0b1,1 a0,0b1,2 a0,1b1,0 a0,1b1,1 a0,1b1,2
a0,0b2,0 a0,0b2,1 a0,0b2,2 a0,1b2,0 a0,1b2,1 a0,1b2,2
a1,0b0,0 a1,0b0,1 a1,0b0,2 a1,1b0,0 a1,1b0,1 a1,1b0,2
a1,0b1,0 a1,0b1,1 a1,0b1,2 a1,1b1,0 a1,1b1,1 a1,1b1,2
a1,0b2,0 a1,0b2,1 a1,0b2,2 a1,1b2,0 a1,1b2,1 a1,1b2,2



Kronecker Product Properties 30

A⊗ (B ⊗ C) = (A⊗B)⊗ C

A⊗ (B + C) = A⊗B +A⊗ C

(B + C)⊗A = B ⊗A+ C ⊗A

(A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D)

(A⊗B)−1 = A−1 ⊗B−1

rank(A⊗B) = rank(A) rank(B)

Cartesian Product 31

Definition

Let ρ : A→ A and σ : B → B be two relations. Their Cartesian product
ρ⊕ σ is a relation from A×B to A×B defined by

(a, b) ρ⊕ σ (a′, b′) ⇐⇒ (a ρ a′ ∧ b = b′) ∨ (a = a′ ∧ b σ b′).

As with the direct product, the carrier set here is the Cartesian set
product A×B, but this operation is not categorical.

In terms of matrices we have

bm(ρ⊕ σ) = bm(ρ)⊗ I + I ⊗ bm(σ).

where the identity matrices are chosen properly for the sum to work.

P5 ⊕ P4

Relational Composition 33

Definition

Suppose ρ : A→ B and τ : B → C are relations. The (relational)
composition of ρ and τ is defined to be the relation σ = ρ • τ : A→ C
where

x σ y ⇐⇒ ∃ z ∈ B (x ρ z ∧ z τ y).

The intermediate element z ∈ B is a witness (for x σ y).

Computationally composition is much more interesting than the previous
operations. To test whether x σ y holds we have to conduct a search for
the witness z such that x ρ z τ y.

Finding good algorithms to compute relational composition is a
non-trivial problem; more later.

Visualizing Composition 34

Composing x ρ y ⇐⇒ x2 = y mod 11.

Example

τ = “parent of”

τ • τ = “grandparent of”

τ c • τ = “sibling of”

Example

τ = divisibility on N: “x divides y”

Then τ • τ = τ

τ c is “x is a multiple of y”

Example

τ = “less than” on N
τ c = >, and τ ∪ τ c = I−N (inequality)

τ • τ ⊂ τ .

But for A = Q,R we have τ • τ = τ .

Some Properties 36

Lemma

Suppose ρ : A→ B , σ : B → C , and τ : C → D are relations.
1 ρ • (σ • τ) = (ρ • σ) • τ .

2 ρ • IB = IA • ρ = ρ.

3 ρ • ∅ = ∅ • ρ = ∅.
4 (ρ • σ)c = σc • ρc.

Proof. Tedious but rather straightforward application of definitions and
a little logic. E.g., the first claim is established like so:

x (ρ • (σ • τ)) y ⇐⇒
∃u
(
x ρ u (σ • τ) y

)
⇐⇒

∃u, v
(
x ρ u σ v τ y

)
⇐⇒

∃ v
(
x (ρ • σ) v τ y

)
⇐⇒

x ((ρ • σ) • τ) y

2

YAM (Yet Another Monoid) 37

By the lemma, the set of all binary relations on A, with relational
composition as operation, and the identity relation as neutral element,
forms a monoid:

〈RelA, •, IA〉

Hence one can study the structure of this monoid from an algebraic point
of view. A more ambitious project would be to add other operations such
as meet and join to the structure.

Exercise

Give a Cayley table for the monoid Rel{0,1}.

Exercise

Is this monoid commutative? Is this monoid a group?

Higher Powers 38

Definition

Let ρ be a relation on A. The powers ρi, i ≥ 0, of ρ are defined by

ρ0 = IA

ρk+1 = ρ • ρk

Composition on the left is arbitrary, we could also have chosen
composition on the right.

Thus x ρk y if, and only if, there is a ρ-chain of length k from x to y:

∃x0, x1, . . . , xk (x = x0 ρ x1 ρ x2 ρ . . . xk−1 ρ xk = y)

In terms of the monoid or relations this is just exponentiation.

Power Example 39

The picture below shows the powers of the relation
x ρ y ⇐⇒ y = x+ 1 on [5]. It is easy to see that in this case, ρk = ∅
for all k ≥ 5, so only ρ through ρ4 are shown.

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Note that the powers of the relation are not comparable; in fact, in this
particular case they are pairwise disjoint.

Chains 40

Let ρ be a square relation on A.

Definition

A ρ-chain is a sequence a0, a1, . . . , an of elements in A such that
ai ρ ai+1 for all i = 0, . . . , n− 1 . a0 is the source of the chain, an its
target and n its length.

This is often expressed informally in infix notation

a0 ρ a1 ρ . . . ρ an−1 ρ an

Computationally, the most interesting problem related to chains is to
check if there is a chain from some given source to a given target. This is
mostly of interest for finite carrier sets where we have a reasonable
representation of the relation.

Exercise

What is the longest chain in the divisibility relation (excluding equality)
on a natural number n?

Knights in Shiny Armor 41

Here is a situation where the Boolean matrix pictures are somewhat
interesting.

Consider the carrier set A = [8]× [8] which may be identified with the
squares of a chess board. Define two squares to be related by ρ if a
knight can move from one to the other.

Can a knight starting at square (1, 1) reach all squares on a chessboard?

We can flatten the chessboard in row-major order so that the Boolean
matrix representation of ρ will be 64 by 64.

The following pictures show reachability by a chain of knight moves, for
lengths 1, 2, 3 and 4.

Knight Moves 42

Chains and Paths 43

Needless to say, chains are just the relation theoretic version of paths in
graph theory.

Thus, if the relation models a communication network (direct links from
station to station), a chain/path corresponds to the possibility of sending
a message from one station to another (hopping).

There are standard algorithms in graph theory to tackle the chain/path
existence problem, most notably depth-first-search and
breadth-first-search.

Theorem

The path existence problem in a finite digraph can be solved in time
linear in the number of nodes plus the number of edges.

Note that the space requirement is also linear in the size of the vertex
set, though.

Basic Properties 44

There is a short list of basic properties of relations that can be combined
to define important types of relations such as orders and equivalence
relation. Let ρ be a binary relation on A.

Definition

property ∀x , y, z ∈ A
reflexive x ρ x

irreflexive ¬(x ρ x)
symmetric x ρ y ⇒ y ρ x

asymmetric ¬(x ρ y ∧ y ρ x)
antisymmetric x ρ y ∧ y ρ x⇒ x = y

transitive x ρ y ∧ y ρ z ⇒ x ρ z

Exercise

Give an example and a counterexample for each property.

Relational Calculus 45

The logical definitions from above are standard, but one could also use
the calculus of relations to pin down these properties.

property condition

reflexive I v ρ
irreflexive I u ρ = ∅
symmetric ρc v ρ
asymmetric ρ u ρc = ∅
antisymmetric ρ u ρc v I
transitive ρ • ρ v ρ

An interesting fact here is that this characterizations is entirely equational
in terms of meet since we can express v equationally as follows:

ρ v σ ⇐⇒ ρ u σ = ρ.

Examples 46

equal-to, subset-of and divides are reflexive

less-than, proper-subset-of and parent-of are irreflexive

equal-to and relatively-prime are symmetric

less-than and parent-of are asymmetric

less-than-or-equal, subset-of and divides are antisymmetric

equal-to, subset-of, divides and ancestor-of are transitive

parent-of and relatively-prime are not transitive

Note that there are corresponding decision problems: how do we check
whether are relation is, say, transitive?

At least for finite carrier sets one would like to have efficient algorithms.

Exercise

Show that (ρ • σ)
c
= σc • ρc.

Exercise

Show that ρ • ρc • ρ v ρ iff ρ • ρc • ρ = ρ.

Exercise

Suppose ρ is reflexive. Show that ρ • ρc • ρ v ρ iff ρ is also symmetric
and transitive.

Exercise

Show that ρ • (σ t τ) = ρ • σ t ρ t τ .

Exercise

Show that ρ • (σ u τ) v ρ • σ t ρ t τ . Find an example that
demonstrates that equality does not hold in general.

� Relations

� Operations and Properties

3 Orders

� Equivalence Relations

� Closures

Orders 49

The relations ≤ on N, ≤ on R and ⊆ on P(N) are similar in a sense,
they organize the elements of the domain into “smaller” versus “larger”
elements.

What are the crucial properties that make them similar?

Definition

Let ρ be a relation on A.

ρ is a preorder (or quasi-order) if it is both reflexive and transitive.

ρ is a partial order if it is a preorder and antisymmetric.

ρ is an order (or total order or linear order) if it is a partial order and all
elements of A are comparable with respect to ρ:

∀x, y ∈ A (x ρ y ∨ y ρ x).

Equivalently, ρ is total if ρ t ρc = UA.

Strict versus Reflexive 50

Often it is more convenient to consider the strict (i.e. irreflexive) version
of an order, obtained by setting

x ρ′ y ⇐⇒ x 6= y ∧ x ρ y.

Notation: ≤ versus <, ⊆ versus ⊂. One sometimes refers to the reflexive
versions as weak orders.

Thus, a strict preorder is any irreflexive and transitive relation. Note that
any such relation is automatically asymmetric.

A strict total order has the additional trichotomy property:
∀x, y ∈ A (x ρ y ∨ x = y ∨ y ρ x).

Also, the converse of an order is often useful: we write ≥ and > versus ≤
and <.

Exercise

Show that the converse of a (strict) pre/partial/total order is again a
(strict) pre/partial/total order.

But Beware 51

The operation ρ′ = ρ− I turns a partial order ρ into a strict partial order
ρ′.

But if ρ is just a preorder, ρ′ need not be transitive.

Exercise

Prove these claims.

Posets 52

Another piece of terminology: a structure

〈A,<〉

consisting of a set A and a partial order < (or a weak version) is often
called a poset.

This is mostly an acknowledgment that partial orders are so important
that one should have a nice, compact, generally accepted name for them
(just like groups or fields).

The study of posets has turned out to be of major importance for the
semantics of programming languages.

Examples 53

The usual order relations on numbers are total orders.

Subset-of and divides are partial orders.

Ordering polynomials by their degree produces a preorder.

Cardinality of a set is a preorder (and has full comparability).

Lies-north-east-of in the plane is a partial order.

Lexicographic order on words is a total order.

The substring order is a partial order on strings:
x � y ⇐⇒ ∃u, v (y = uxv).

The element relation ∈ is a total order on the class of ordinals but
only a partial order on the class of all sets.

Ordering Pairs 54

A standard problem is to lift a given order ≤ on A to A×A. One
plausible definition is

Definition

The product order of ≤ with itself is defined by

(x, y) ≤2 (x′, y′) ⇐⇒ x ≤ x′ ∧ y ≤ y′.

Example

On the plane R× R this is the “north-east-of” relation.

Thus, the product order is partial, even though 〈R;≤〉 is a total order.
Can we manufacture a total order?

How about

(x, y)� (x′, y′) ⇐⇒ x ≤ x′ ∨ (x = x′ ∧ y ≤ y′).

Exercise

Show that � is indeed a total order.

Ordering Sequences 55

It is slightly harder to order all sequences over A, not just pairs.

The usual order on characters a < b < c < . . . < y < z can be lifted to
words over this alphabet.

Recall that we write |u| for the length of a sequence u.

Definition

Consider two sequences u and v over A.

1 Lexicographic Order (Dictionary Order)
u ≺ v lexicographically if u is a proper prefix of v or if u = xay,
v = xbz and a < b, where x, y, z are sequences, a, b ∈ A.

2 Length-Lex Order
u ≺ v in the length-lex order if |u| < |v| or |u| = |v| and u precedes
v lexicographically.

3 Length Order
u ≺ v in the length order if |u| < |v|.

Lex Orderings 56

Lexicographic order and length-lex order are bonified total orders on finite
sequences, but length order is only a preorder.

On words over the alphabet {0, 1}, length-lex order produces

ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, . . .

This is crucially important for induction arguments: we finish off all
words of length k before working on length k + 1.

But lexicographic order for these few words would be

ε, 0, 00, 000, 001, 010, 011, 1, 11

This is much less natural if one tries to systematically work through these
words.

Lexicographic order is used in the C++ library STL to overload
operator< for stacks.

Well-Orders 57

Talking about induction, here is the key requirement for inductive
arguments and constructions.

Definition

A binary relation ρ on A is well-founded if every non-empty subset of A
contains a ρ-minimal element. If ρ is also a strict total order, it is said to
be well-ordered.

So for a well-founded relation 〈A,<〉 we have

∅ 6= X ⊆ A ⇒ ∃ a ∈ X ∀ z ∈ A (z < a → z /∈ X).

Equivalently (using the axiom of choice), there are no infinite descending
chains in <:

a0 > a1 > a2 > . . . > an > . . .

Inductive Properties 58

Definition

Let 〈A,<〉 be a well-founded relation. A subset X ⊆ A is inductive if
∀x < y (x ∈ X) → y ∈ X.

The fundamental result that enables us to perform induction is the
following.

Theorem

Let 〈A,<〉 be well-founded and X ⊆ A inductive. Then X = A.

So we can perform induction on the natural numbers with the standard
order, on words in length-lex order, on ordinals with the standard order,
on inductively defined data structures such as trees and lists, and so on.

Exercise

Show that we can also perform induction in a suitable partial order. In
fact, not even transitivity is needed, just the well-ordering property from
above.

Some Well-Founded Relations 59

The classic example of a well-ordering is 〈N, <〉 , the standard order on
the natural numbers.

But other number systems such Z, Q and R all fail to be well-founded.
Do not confuse this with the Well-Ordering Principle which says that
every set can be well-ordered: they can be, but the standard order does
not do the job.

In fact, when Zermelo first proposed his well-ordering principle in 1904 he
met with considerable resistance: any well-order of the reals seemed
artificial and contrived.

Well-Foundedness in CS 60

For computer science, recursive data-types produce important examples
of well-founded relations. Many operations on data structures such as
lists, words and trees can be explained in terms of induction along these
well-founded relations.

Another important application is termination: if the steps in a
computation can be described in terms of a well-founded relation, the
computation must be finite. This is the idea behind the totality proof for
Ackermann’s function.

Lemma

The direct (pointwise) product of two well-founded relation is
well-founded. The lexicographic product of two well-founded relation is
well-founded.

Exercise

Prove the lemma. How about well-founded partial orders and
well-orderings?

Multisets 61

Suppose A is some set equipped with an order <.

Informally, a multiset over A is a set that allows multiple occurrences of
an element, as in {a, a, a, b, b}. Technically, a multiset can be interpreted
as a map X : A→ N where X(a) indicates the number of occurrences of
element a. A finite multiset is a set with finite support.

Write M(A) for the collection of all finite multisets over A.

We can define a partial order X ≺ Y on M(A) as follows: remove some
elements a from X, and replace them by elements b < a. Thus

∅ ≺ {1, 1, 1, 2, 2, 2} ≺ {1, 1, 3} ≺ {1, 4}

More precisely,

Y ≺ X ⇐⇒ ∃U, V (U 6= ∅∧Y = (X−U)∪V ∧∀ v ∈ V ∃u ∈ U (v < u))

Well-Founded Multisets 62

A little experimentation with M(N) shows that ≺ appears to be
well-founded: while the number of elements potentially increases in the
step Y ≺ X, these elements are smaller, so ultimately the well-ordering
on N wins out.

Theorem

Let < be an order on A and ≺ the corresponding order on M(A). Then
< is well-founded if, and only if, ≺ is well-founded.

The proof requires König’s lemma on finitely branching infinite trees.

� Relations

� Operations and Properties

� Orders

4 Equivalence Relations

� Closures

Generalizing Equality 64

Equality is one of the most important relations. Clearly, equality is
reflexive, symmetric and transitive:

x = x,

x = y implies y = x, and

x = y, y = z implies x = z.

It is natural to consider weaker versions of equality: coarser relations that
maintain these three properties.

These relations formalize the notion of two objects being “the same” in
some sense – without necessarily being identical.

Equivalence Relations 65

Definition

A square relation ρ on A is an equivalence relation if ρ is symmetric,
reflexive, and transitive.

Suppose ρ equivalence relation. The equivalence class of a ∈ A is:

[a]ρ = {x ∈ A | a ρ x }.

A/ρ = { [a]ρ | a ∈ A } is the collection of all such classes, the quotient of
A by ρ. The cardinality of A/ρ is the index of ρ.

Recall that for a binary relation ρ on some set A we have

property ∀x , y, z ∈ A
reflexive x ρ x
symmetric x ρ y → y ρ x
transitive x ρ y ∧ y ρ z → x ρ z

Examples 66

equality is an equivalence relation

same-weight is an equivalence relation on dumbbells

same-parents is an equivalence relation on humans

same-cardinality is an equivalence relation on sets

same-area is an equivalence relation on polygons

same-input-output is an equivalence relation on programs

Note that these are all of the form

x ρ y ⇐⇒ f(x) = f(y)

for some suitable function f .

The Classic Example 67

Congruence modulo m on the integers.

x = y (mod m) ⇐⇒ m divides x− y

Is an equivalence relation on Z where

[a] = . . . , a− 2m, a−m, a, a+m, a+ 2m, . . .

Note that the equivalence relation (mod m) has index m.

This simple equivalence is the foundation for a lot of cryptographic
schemes, including RSA.

Was first studied in great detail by C. F. Gauss (1777–1855) in his work
on number theory.

Equivalence Classes 68

What can we say about equivalence classes?

The equivalence classes of IA and UA are trivial:

{a} = [a]= and A = [a]UA

In general, we always have
a ∈ [a]ρ

by reflexivity.

Usually write [a] instead of [a]ρ unless there is any danger of confusion.

Disjoint Classes 69

The following dichotomy is the single-most important property of
equivalence classes.

Lemma

Let ρ be an equivalence relation on A. For all a, b ∈ A:

[a] = [b] or [a] ∩ [b] = ∅.

Proof.

If c ∈ [a] ∩ [b], then by symmetry for any z ∈ [a]:

z ρ a ρ c ρ b

Hence z ∈ [b] by transitivity. But then [a] ⊆ [b].

By a symmetric argument, [b] ⊆ [a], done. 2

Partitions 70

Definition

A partition of a set A is a set P ⊆ P(A) of subsets of A such that

X 6= ∅ for all X ∈ P ,⋃
P = A, and

X 6= Y ∈ P → X ∩ Y = ∅.

The sets X ∈ P are called the blocks of the partition.

This is really just different terminology, not a new idea: a block is
nothing but an equivalence class.

By the lemma, the classes form a partition.

Same Idea 71

Lemma

Equivalence relations correspond exactly to partitions.

Proof.

If ρ is an equivalence relation on A the equivalence classes [a] of ρ
produce a partition by the last lemma.

Now let P be a partition of A. Define

x ρ y ⇐⇒ ∃X ∈ P (x, y ∈ X).

Clearly ρ is reflexive and symmetric.

Transitivity follows from the lemma. 2

Kernel Relations 72

???????????

Example: Knights 73

Consider the chess board C = [8]× [8].

Define a relation ρ on C by: x ρ y iff a knight can move from x to y
(sequence of single moves).

Claim

ρ is an equivalence relation.

There is exactly one class: [(1, 1)]ρ = C. Same for a rook, king, queen.

But for a bishop there are two equivalence classes: the black squares and
the white squares.

Exercise

How many equivalence classes for a pawn? Only consider the basic move
(i, j)→ (i, j + 1), no conversion. What’s wrong?

Boolean Matrices 74

Consider as carrier set the collection of all binary lists of length 6
(organized in natural order). Here is a picture of the relation “list x has
the same number of 1’s as list y.

Note that by definition this is an equivalence relation.

The picture clearly shows reflexivity and symmetry. But how about
transitivity?

Reordering the Carrier Set 75

Transitivity is just about impossible to see from the last picture.

But, if we reorder the carrier set so that equivalent elements are all
consecutive, the picture becomes very clear.

Exercise

What are the sizes of these blocks?

Reordering 76

Picture 1 uses the carrier set in natural order, but in picture 2 the carrier
set is reordered so all elements of a block in the equivalence relation are
contiguous.

natural reordered
000000 000000
000001 111111
000010 000001
000011 000010
000100 000100
000101 001000
.
111101 110010
111110 110100
111111 111000

The important point here is that the relation is unchanged, only its
representation in terms of the Boolean matrix has changed.

Example: Equidecomposability 77

Here is a more interesting equivalence relation.

Definition

Two polygons P and Q are equidecomposable if P can be cut up into
finitely many triangles which can be reassembled to form Q.

We will not give a precise definition of what we mean by reassemble and
appeal to common (geometric) sense.

Lemma

Equidecomposability is an equivalence relation.

Proof. Reflexivity and symmetry is obvious. But transitivity is not: need
the fact that the intersection of two polygons is another polygon (or a set
of polygons) and that all polygons can be triangulated. 2

A Picture 78

Given two triangulations of the same polygon we can construct a finer
one: just triangulate all the polygonal regions produced by the
intersection of the two given triangulations.

Exercise

Give a detailed proof of the lemma.

Challenge 79

The square on the right is
√
5 by

√
5, so both polygons have area 5.

Exercise

Show that the two polygons are equidecomposable. Use as few cuts as
possible.

The Bolyai-Gerwin theorem 80

It is clear that any two equidecomposable polygons must have the same
area: cutting them up and reassembling the pieces does not change the
area.

But it is somewhat surprising that the opposite direction also holds.

Theorem (Bolyai-Gerwin Theorem)

Let P and Q be two polygons of equal area. Then P and Q are
equidecomposable.

We sketch the proof below. It is an excellent exercise to turn this into a
real proof.

Step 1 81

To prove the Bolyai-Gerwin theorem it suffices to show that every polygon
P is equidecomposable with a square: there is exactly one square for each
area. Since we can triangulate any polynomial, we start with triangles.

Here is a method to convert triangles to rectangles of equal area:

Step 2 82

In the second step we convert rectangles to squares.

This requires that the longer side of the rectangles is ≤ 4 times the
shorter one. What if not?

Step 3 83

Lastly, we have to add squares and produce new squares. We exploit
Pythagoras’s theorem: a2 + b2 = c2.

b a

c

a
b

Stroustrup, p. 467 84

Sorting algorithms in the STL can use orders supplied by user: provide a
comparison operation cmp(x, y). Must be a “strict weak ordering.”

sort(A.begin(), A.end(), cmp);

[1] cmp(x, x) is false.

[2] If cmp(x, y) and cmp(y, z), then cmp(x, z).

[3] Define equiv(x, y) to be !(cmp(x, y)||cmp(y, x)). If equiv(x, y) and
equiv(y, z), then equiv(x, z).

What on earth does this really mean?

Let’s write ρ for the relation cmp, and τ for equiv.

Note that ρ is transitive and irreflexive by [1] and [2].

Stroustrup, Explained 85

Claim

τ is an equivalence relation.

First off, τ = (ρ ∪ ρc)−. Transitivity of τ is given.

Reflexivity follows from the fact that both ρ and ρc are irreflexive.

Symmetry follows from ρ ∪ ρc being symmetric, and symmetry being
preserved by complementation. 2

So, the specification really says: incomparable elements have to be
equivalent, we don’t care which order they appear in.

Otherwise the sorting algorithm will not work.

Sorting complex numbers according to their absolute value is fine.

Sorting lists according to their length is fine.

Sorting subsets according to cardinality will work.

Sorting an array of subsets according to x ⊆ y will not work.

� Relations

� Operations and Properties

� Orders

� Equivalence Relations

5 Closures

Closure Operations on Relations 87

A frequent computational problem is to enlarge a given a relation ρ on A
a bit until it has some property P .

Definition

Let ρ be a relation on A and P a property of relations. The P -closure of
ρ is the v-least relation σ such that ρ v σ and σ has property P .

Important cases are: reflexive closure, symmetric closure, transitive
closure; combinations thereof.

Notation:
The transitive reflexive closure is often written ρ?. The transitive closure
is written ρ+.

How do we know that the, say, transitive closure exists? We have to
argue that a relation with certain properties actually exists.

Closures as Intersections 88

Claim

If ρ v σi and σi is transitive, i = 1, 2, then σ1 u σ2 is again transitive.

This claim is true even for an infinite family (σi)i∈I .

But then, abstractly, the closure is

σ =
⋂
{ τ v A×A | ρ v τ ∧ τ has property P }

The set on the right can never be empty: UA is in there.

Of course, this is useless for computational purposes: we need
algorithms, not general abstract nonsense.

A fine point: set on the right contains the relation whose existence we
worry about (impredicative definition).

Other Closures 89

In the same way we can define reflexive closure, symmetric closure,
transitive closure and reflexive transitive closure.

Notation:
eqcl(ρ), rcl(ρ), scl(ρ), tcl(ρ), rtcl(ρ)

Lemma

All these operations F are idempotent: F (F (ρ)) = F (ρ).

Lemma

scl(rcl(ρ)) = rcl(scl(ρ))

rtcl(ρ) = tcl(rcl(ρ)) = rcl(tcl(ρ))

eqcl(ρ) = tcl(scl(rcl(ρ)))

Reflexive and Symmetric Closures 90

One can think of ρ as a succinct representation of σ: we have ρ, and we
want to compute σ. Sometimes, that’s easy.

Write rcl(ρ) and scl(ρ) for reflexive and symmetric closure, and rscl(ρ)
for the reflexive symmetric closure.

rcl(ρ) = ρ t IA
scl(ρ) = ρ t ρc

rscl(ρ) = ρ t ρc t IA

Example

On the natural numbers we have: rcl(<) = ≤, scl(<) = 6= = UA − IA,
rscl(<) = UN

Exercise

Show that rscl(ρ) = rcl(scl(ρ)) = scl(rcl(ρ)). Show that
rcl(rcl(ρ)) = rcl(ρ).

Saving Space 91

Here is another example: equivalence as closure.

Suppose you need to implement equivalence relations on [n] where n is,
say, about 1000. There could be as many as 106 pairs that are related.
Clearly, we do not wish to store so much information.

What do we really need to know?

The property “is an equivalence relation” is yet another closure property.
Get another closure operation: ec(ρ):

ec(ρ) = tc(rsc(ρ)) = (I t ρ t ρc)+

But the size of ρ may well be O(n), while the size of ec(ρ) is O(n2).

Powers and Transitive Closure 92

Powers and transitive closure are very closely connected. We could have
defined the closures like so:

rtcl(ρ) =
⊔
k≥0

ρk = IA t ρ t ρ2 t ρ3 t . . .

tcl(ρ) =
⊔
k>0

ρk = ρ t ρ2 t ρ3 t . . .

Of course, this definition is a bit intimidating since it uses an infinitary
operator.

But note that unlike with infinite series in calculus there is no problem
with convergence here: no matter what the individual terms are, the big
join will always exist.

Arbitrary Chains 93

This characterization simply says that x tcl(ρ) y iff

∃ k ≥ 0 ∃x0, x1, . . . , xk (x = x0 ρ x1 ρ . . . ρ xk−1 ρ xk = y)

Note that length of the chains is actually bounded since A is finite.

Exercise

One can always assume k ≤ n− 1 where n = |A|.

We will exploit this fact in the section on algorithms for relations.

Aside: k-ary Relations 94

We have limited our discussion to binary relations, but of course we can
also study relations on k objects where k ≥ 1. We can define relations in
general to be subsets

ρ ⊆ A1 ×A2 × . . .×Ak

of general Cartesian products.

The case k = 1 is somewhat uninteresting, since unary relations are
essentially the same as sets. However, k-ary relations for k > 2 do
appear, in particular when dealing with databases.

For example, we might be interested in a relation on the product of

A1: students

A2: departments

A3: degree programs
A4: courses

A5: grades

A6: status indicator

We won’t pursue this matter here, google for relational data bases.

	Relations
	Operations and Properties
	Orders
	Equivalence Relations
	Closures

