
CDM
Iteration

Klaus Sutner

Carnegie Mellon Universality

30-iteration 2017/12/15 23:20

1 Iteration, Trajectories and Orbits

� Fixed Points

� Goodstein Sequences

� Finding Cycles

Computational Memes 3

There are several general ideas that are useful to organize computation,
perhaps the two most important ones being

Recursion (self-similarity)

Iteration (repetition)

Recursion is quite popular and directly supported in many programming
languages.

Unfortunately, iteration requires some amount of extra work.

Iteration 4

Definition

Let f : A→ A be an endofunction. The kth power of f (or kth iterate of f) is
defined by induction as follows:

f0 = IA

fk = f ◦ fk−1

Here IA denotes the identity function on A and f ◦ g denotes composition of
functions.

Informally, this just means: compose function f (k − 1)-times with itself.

fk = f ◦ f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
k terms

General Laws 5

Without any further knowledge about f there is not much one can say about
the iterates fk. But the following always holds.

Lemma (Laws of Iteration)

fn ◦ f = fn+1

fn ◦ fm = fn+m

(fn)m = fn·m

Exercise

Prove these laws by induction using associativity of composition.

Wurzelbrunft’s Idea 6

Prof. Dr. Alois Wurzelbrunft stares at these equations and immediately
recognizes a deep analogy to exponentiation.

He also remembers that there is a method for fast exponentiation based on
squaring:

a2e = (ae)2

a2e+1 = (ae)2 · a

which allows us to compute ae in O(log e) multiplications.

Wurzelbrunft’s Conclusion:
There is an analogous “fast iteration” method.

Aside 7

Good mathematicians see analogies between theorems or theo-
ries; the very best ones see analogies between analogies.

S. Banach

So is Wurzelbrunft brilliant?

Fast Iteration 8

Suppose we want to compute f1000. The obvious way requires 999
compositions of f with itself.

By copying the standard divide-and-conquer approach for fast exponentiation
we could try

f2n = (fn)2

f2n+1 = f ◦ (fn)2

This seems to suggest that we can compute fn(x) in O(logn) applications of
the basic function f .

After all, it’s just like exponentiation, right?

Linear Maps 9

If the function f in question is linear it can be written as

f(x) = M · x

where M is a square matrix over some suitable algebraic structure. Then

f t(x) = M t · x

and M t can be computed in O(log t) matrix multiplications.

So this is an exponential speed-up over the standard method.

Polynomial Maps 10

Another important case is when f is a polynomial map

f(x) =
∑

aix
i

given by a coefficient vector a = (ad, . . . , a1, a0).

In this case the coefficient vector for f ◦ f can be computed explicitly by
substitution. This is useful in particular when computation takes place in a
quotient ring such as R[x]/(xn − 1) so that the expressions cannot blow up.

Again, an exponential speed-up over the standard method.

But Beware of Hasty Conclusions 11

But we cannot conclude that f t(x) can always be computed in O(log t)
operations.

The reason fast exponentiation and the examples above work is that we can
explicitly compute a representation of f ◦ f , given the representation of f .

But, in general, there is no fast representation for f ◦ f , we just have to
evaluate f twice.

Just think of f as being given by a piece of C code. We can produce another
piece of C code that computes f2, and more generally for f t, but the code just
evaluates f t-times, in the obvious brute-force way.

Exercise

Ponder deeply. Assume the speed-up trick always works and figure out what
that would mean for complexity theory.

Hasty Conclusion I 12

Speaking about hasty conclusions, here is a simple inductively defined sequence
of integers.

a1 = 1

an = an−1 + (an−1 mod 2n)

Thus, the sequence starts like so:

1, 2, 4, 8, 16, 20, 26, 36, 36, 52, 60, 72, 92, 100, 110, 124, 146, 148, 182, 204

This seems rather complicated. The function appears to be increasing in a
somewhat complicated manner.

Alas, there is a rude surprise.

Ultimately Linear 13

The sequence is ultimately linear: a396+k = a396 + k · 194 for k ≥ 0.

100 200 300 400 500 600

20000

40000

60000

80000

100000

100 200 300 400 500 600

200

400

600

800

The plot on the left is the sequence, on the right (in red) are the forward
differences.

Exercise

Figure out why the sequence is ultimately linear.

Hasty Conclusion II 14

Here is another strange integer sequence:

an = d2/(21/n − 1)e − b2n/ log 2c

This time, the sequence starts like so:

0, . . .

and continues like this for a long, long time, for trillions of terms.

Note that it is not so easy to compute the terms. At any rate, it sure looks like
the sequence is constant 0. Alas

a777 451 915 729 368 = 1

Iteration versus Recursion 15

Iteration can be construed as a special case of recursion.

F (0, y) = y

F (x+ 1, y) = f(F (x, y))

Then F (x, y) = fx(y).

Conversely, iteration can be used to express recursion. Suppose

f(0,y) = g(y)

f(x+ 1,y) = h(x, f(x,y),y)

is defined by primitive recursion.

As Iteration 16

Define a function H : N× N× Nk → N× N× Nk by

H(x, z,y) = (x+ 1, h(x, z,y),y)

Then

snd(Hx(0, g(y),y)) = f(x,y)

This is the natural definition, but if we wanted to we could make H unary by
coding everything up as a sequence number.

Unary Iteration 17

More precisely, suppose we have some simple basic functions such as

x+ y x ∗ y x
•− y rt(x)

Here rt(x) is the integer part of
√
x. These suffice to set up coding machinery,

which can then be used to replace recursion by iteration. It suffices to define
functions via

f(x) = gx(0)

to get the same class as from the recursions above.

Exercise

Come up with a precise version of this statement and give a detailed proof.

Trajectories and Orbits 18

Definition

The trajectory or orbit of a ∈ A under f is the infinite sequence

orbf (a) = a, f(a), f2(a), . . . , fn(a), . . .

The set of all infinite sequences with elements from A is often written Aω.
Hence the we can think of the trajectory as an operation of type

(A→ A)×A→ Aω

that associates a function on A and element in A with an infinite sequence
over A.

Terminology Warning 19

Sometimes one is not interested in the actual sequence of points but rather in
the set of these points:

{ f i(a) | i ≥ 0 }

While the sequence is always infinite, the underlying set may well be finite,
even when the carrier set is infinite.

In a sane world one would refer to the sequences as trajectories, and use the
term orbit for the underlying sets. Alas, in the literature the two notions are
hopelessly mixed up.

So, when we refer to a “trajectory” we will always mean the sequence, but,
bending to custom, we will use “orbit” for both.

Digression: Dedekind’s Ketten (Chains) 20

Here is a clever definition due to Dedekind: given an endofunction f and a
point a, the corresponding chain is defined to be⋂

{X ⊆ A | a ∈ X, f(X) ⊆ X }

Thus, the chain is the least set that contains a and is closed under f . That is
exactly the orbit of a under f , considered as a set.

Who cares?

Dedekind’s definition does not require the natural numbers. In fact, it can be
used to define them. In Dedekind’s view, this means that arithmetic can be
reduced to logic.

From Chains to Naturals 21

Here is how. Suppose we have a function f : A→ A and a point a ∈ A such
that

f is an injection,

a is not in the range of f ,

A is the chain of f and a.

Dedekind calls these sets simply infinite.

We can think of a as 0 and, more generally, we can think of fn(a) as n.

So this is a way of describing the natural numbers, the smallest infinite set,
without any hidden references to the naturals.

The Price: Impredicativity 22

According to Dedekind, the chain C defined by f and a has the form

C =
⋂
{X ⊆ A | a ∈ X, f(X) ⊆ X }

But note that C is one of the X’s on the right hand side. So there is some
(non-vicious) circularity in this approach. Most mathematicians would not bat
an eye when confronted with definitions like this one, they are totally standard.

And the payoff is huge. For example, when Bernstein told Dedekind about his
correct proof of the “Cantor-Schröder-Bernstein” theorem, he was shocked to
hear that Dedekind had a much better proof, based on his chains.

The Lasso 23

At any rate, if the carrier set is finite, all trajectories must ultimately wrap
around and all orbits must be finite:

What changes is only the length of the transient part and the length of the
cycle (in the picture 6 and 10).

Fixed Points, Cycles and Periods 24

Definition

Let f : A→ A be an endofunction.

a ∈ A is a fixed point of f if f(a) = a.

A sequence a0, . . . , an−1 in A is a cycle of f if f(ai) = ai+1 mod n.

A cycle of length n is also called an n-cycle.

The orbit of a under f is periodic if ∃ p > 0 : fp(a) = a.

The orbit of a under f is ultimately periodic
∃ t ≥ 0, p > 0 : f t+p(a) = f t(a).

Cycles and fixed points are closely related:

a0, . . . , an−1 is an n-cycle of f iff a0 is a fixed point of fn.

Transient and Period 25

If A is finite, then any orbit of f : A→ A must be ultimately periodic:

f t(x) = f t+p(x)

for some t ≥ 0, p > 0, which values depend on x.

Definition

The least t and p such that f t(x) = f t+p(x) is the transient length and the
period length of the orbit of x (wrt. f).

Thus, an orbit is periodic iff the transient is 0.

Also, a function on a finite set has only transients of length 0 iff the function is
injective iff it is a permutation.

Limit Cycles 26

The lasso shows the general shape of any single orbit, but in general orbits
overlap. All orbits with the same limit cycle are called a basin of attraction in
dynamics.

The Functional Digraph 27

As the last picture shows, it is natural to think of f as a directed graph on the
carrier set where the edges indicate the action of f .

Definition

The functional digraph (or diagram) of f : A→ A is defined as Gf = 〈A,E 〉
where E = { (x, f(x)) | x ∈ A }.

Note that every vertex in Gf has outdegree 1, but indegrees may vary.

The non-trivial strongly connected components of the digraph are the limit
cycles of the function. The weakly connected components are the basins of
attraction.

Analyzing the Diagram 28

There are several natural parameters associated with the digraph that provide
useful information about the function in question.

Indegree. If all nodes have the same indegree k the function is k-to-1.
Otherwise, determine the maximum/minimum indegree, the distribution of
values.

Periods. Count the number of limit cycles, and their length.

Transients. Determine the length of the transients leading to limit cycles.

At least when the carrier set is finite we would like to be able to determine
these parameters easily. Alas, even for relatively simple maps this turns out to
be rather difficult.

Reachability 29

The geometric perspective afforded by the diagram also suggests to study
path-existence problems.

Definition

Let f be a function on A and a, b ∈ A two points in A. Then point y is
reachable from x if for some i ≥ 0:

f i(x) = y.

In other words, point y belongs to the orbit of x.

Proposition

Reachability is reflexive and transitive but in general not symmetric.

Reachability is symmetric when A is finite and f injective (and therefore a
permutation): each orbit then is a cycle and forms an equivalence class.

Confluence (aka Basins of Attraction) 30

Definition

Let f be a function on A and a, b ∈ A two points in A. Points a and b are
confluent if for some i, j ≥ 0:

f i(a) = f j(b).

In other words, the orbits of a and b merge, they share the same limit cycle
(which may be infinite and not really a cycle).

Reachability implies confluence but not conversely. For finite carrier sets
reachability is the same as confluence iff the map is a bijection.

Confluence is an Equivalence 31

Proposition

Confluence is an equivalence relation.

Reflexivity and symmetry are easy to see, but transitivity requires a little
argument.

Let f i(x) = f j(y) and fk(y) = f l(z), assume j ≤ k. Then with d = k − j ≥ 0
we have

f i+d(x) = f j+d(y) = fk(y) = f l(z).

Each equivalence class contains exactly one cycle of f , and all the points whose
orbits lead to this cycle – just as in the last picture.

Small Example 32

Here is a somewhat frivolous operation on binary lists: given L, replace the
first element of L by 0, and then rotate to the left by 2 places.

Here is the orbit of a generic list (with symbolic entries) of length 6 under this
operation:

0 : x1 x2 x3 x4 x5 x6
1 : x3 x4 x5 x6 0 x2
2 : x5 x6 0 x2 0 x4
3 : 0 x2 0 x4 0 x6
4 : 0 x4 0 x6 0 x2
5 : 0 x6 0 x2 0 x4
6 : 0 x2 0 x4 0 x6

So both transient and period are 3 in the generic case. But note the for special
values of x2, x4 and x6 the period may be shorter (ditto for the transient and
x1, x3 and x5).

The following picture shows the behavior of all binary lists of length 6 under
this operation.

All Orbits 33

There are two fixed points, and two 3-cycles.

Another View 34

n = 8 35

By Contrast n = 9 36

Two Pictures, One Object 37

The two pictures

represent the same functional digraph, albeit from a different perspective.

Depending on what one is interested one or the other may be preferable.

Example: Exclusive Or 38

Here is a slightly more ambitious example, though the analysis turns out still to
be fairly easy in this case. Consider the map

f : 2n → 2n

defined by

f(x) = L(x) xor R(x)

where L and R denote cyclic left- and right-shift, respectively, and xor is
bitwise exclusive or.

E.g., for n = 10 we have f(0, 0, 0, 1, 1, 1, 0, 0, 0, 0) = (0, 0, 1, 1, 0, 1, 1, 0, 0, 0)

Some Orbits, n = 10 39

The Whole Diagram 40

The Parameters 41

The diagram is highly uniform in this case and can easily be described in terms
of the general parameters.

Every node has indegree 4.

There are 40 limit cycles of length 6, 5 limit cycles of length 3 and one
fixed point.

The transient lengths for all points not on a limit cycle is 1.

Alas, this is not really interesting. What we really would like to have is an
answer in terms of the parameter n.

This is just the special case n = 10.

Some Orbits, n = 31 42

A Battle Plan 43

How would one go about answering this question?

We need at the very least

a program that takes as input an n-bit pattern and computes transient
and period, and

a program that takes as input n and determines the whole diagram.

Why is the second item listed separately?

Phase Space 44

Concretely, suppose you have a Boolean function

f : 224 → 224

and you want to compute all transients and periods.

The space in question is A = 224, about 16 million elements.

Exercise

What is a plausible algorithm?

What if we had to deal with 32 bits instead, with 64?

� Iteration, Trajectories and Orbits

2 Fixed Points

� Goodstein Sequences

� Finding Cycles

Fixed Points 46

Fixed points are particularly interesting. Quite a few computational tasks can
be rephrased as a fixed point computation. In the right environment this
approach produces very elegant algorithms.

Definition

Let f : A→ A and a ∈ A. Write FP(f, a) for the fixed point on the orbit of a
under f if it exists (undefined otherwise).

So our claim is that there are lots of examples where an algorithm boils down
to computing FP(f, a) for the right choice of f .

Note that most current programming language do not directly support the
operation FP, though some like Mathematica do.

Binary Expansions 47

Here is a more utilitarian example. Define the following operation on numbers
and binary lists.

f : N× List(2)→ N× List(2)

f(0, L) = (0, L)

f(x, L) = (x div 2, prep(L, x mod 2))

Then FP(f, (x, nil)) = (0, bin(x)) where bin(x) is the binary expansion of x.

In the right environment, this provides a one-liner for conversion:

tobin(x) = last(FP(f, (x, nil)))

Experimental, Interactive Computing 48

The one-liner may not seem particularly impressive.

In fact, when constructing large programs it may be preferable to use lots of
simple operations, rather than somewhat cryptic and complicated “primitives”
such as FP. Kenneth Iverson’s APL from the 1960s is a perfect example of a
language that tends to produce “write-only” code.

But for quick-and-dirty one-shot computations this is the way to go.

In experimental computing it is important to get results quickly so one try out
various possibilities – there is no time to write, debug and compile a
complicated program.

One has to rely on an expressive language (including for example list
manipulation primitives) together with a large base of algorithms (such as
integration, factorization, . . .).

Application: Transitive Closure 49

A classical computational problem is to determine the transitive reflexive
closure ρ? of a given binary relation ρ ⊆ A×A, A finite.

One way to tackle this is by thinking of ρ as a digraph and use standard graph
algorithms. Another is to apply iteration.

Define the square of a relation

squ(ρ) = ρ2 = ρ • ρ

to be the composition of the relation with itself.

Lemma

If ρ is reflexive, then FP(squ, ρ) is the transitive reflexive closure of ρ.

Efficiency? 50

If the carrier set has size n then ρ? = ρt where t ≤ n− 1. Hence we have to
iterate the squaring operation at most log2 n times.

How does one implement the squaring operation? If we use Boolean matrices
to represent the relations the relational composition comes down to matrix
multiplication, a cubic operation with standard algorithms. The whole
computation is O(n3 logn), slightly underwhelming.

Note, though, for small n, say, n ≤ 256, one can exploit hardware to make this
very fast.

Application: Equivalence Relations 51

Recall that an equivalence relation E on A can be represented by a selector
function f : A→ A such that E is the kernel relation defined by f :

x E y ⇐⇒ f(x) = f(y)

Computationally this is advantageous since we can use a simple array to
represent f :

This means we can test x E y in O(1) steps, and the data structure has size
O(n) (assuming, of course, that the elements in the carrier set are constant
size).

Exercise

Why is every equivalence relation on A a kernel relation of an endofunction on
A?

Union/Find 52

A more challenging problem is to deal with dynamic equivalence relations: the
relation changes over time as more and more equivalent pairs of elements are
discovered. The (static) canonical selector function is not well-suited to this
situation.

Instead, we use a function f : A→ A such that

x E y ⇐⇒ FP(f, x) = FP(f, y).

Thus, an equivalence class consists of one basin of attraction of f .

A priori equivalence testing is just O(n): the transients might be very long.
Each tree represents an equivalence class and is directed towards the root.

View From a Tree 53

Intuitively, we build a collection of trees, initially all consisting of a single node:
initially, f(x) = x for all x.

Here is a primitive version (without ranking and path compression). For every
new pair (a, b):

Compute a0 = FP(f, a) and b0 = FP(f, b).

If a0 = b0, do nothing.

Otherwise, set f(b0) = a0.

Clearly maintains the fixed point property.

By adding ranked union and path compression we can keep the transients so
small that the whole algorithm is essentially linear in the number of operations.

Exercise

Read up on the details of the Union/Find algorithm.

Clever Heuristics 54

There are two hackish improvements to make this algorithm enormously
efficient.

Ranked union: attach the shallower tree to the deeper one.

Path compression: attach all elements in the branches to p and q directly
to the new root.

Theorem

The Union/Find algorithm has essentially linear running time.

The running time is O(mα(n)) where m is the number of operations and n
the size of the carrier set. Here α is the “inverse” of the Ackermann function:

α(n) = min
(
k | n ≤ A(k, k)

)
So, in theory α(n) tends to infinity – but in the real world α(n) is a small
constant.

Union/Find Example 55

Carrier set [100], 100 randomly generated pairs, no ranking, no path
compression.

Union/Find Example 56

Carrier set [100], 100 randomly generated pairs, with ranking and path
compression.

Decimal Fractions 57

Computations that end when a fixed point has been reached are particularly
elegant, but sometimes one has to to stop after going around the limit cycle for
the first time. Note that this makes it quite a bit more difficult to decide when
to stop.

A classical example: conversion of a rational number 0 < x < 1 into a decimal
fraction. Since x =

∑
i≥1 di · 10−i where 0 ≤ di ≤ 9 we have the following

conversion algorithm:

f : List(N)×Q→ List(N)×Q
f(L, x) = (app(L, floor(10x)), fract(10x))

Stop when last(f i(nil, x)) assumes the same value twice (i.e., we are on the
limit cycle).

Example 58

For x = 1
123

we get

1

123
,

10

123
,

100

123
,

16

123
,

37

123
,

1

123
, . . .

leading to digits

0.00813 00813 00813 . . .

So the transient is 0 and the period is 5 in this case.

A Long Cycle 59

But for x = 1
1234

there is a transient of 1, and a period of 88.

1

1234
,

5

617
,
50

617
,
500

617
,
64

617
,
23

617
,
230

617
,
449

617
,
171

617
,
476

617
,

441

617
,
91

617
,
293

617
,
462

617
,
301

617
,
542

617
,
484

617
,
521

617
,
274

617
,
272

617
,

252

617
,
52

617
,
520

617
,
264

617
,
172

617
,
486

617
,
541

617
,
474

617
,
421

617
,
508

617
,

. . .

76

617
,
143

617
,
196

617
,
109

617
,
473

617
,
411

617
,
408

617
,
378

617
,
78

617
,
163

617
,

396

617
,
258

617
,
112

617
,
503

617
,
94

617
,
323

617
,
145

617
,
216

617
,
309

617
,

5

617

� Iteration, Trajectories and Orbits

� Fixed Points

3 Goodstein Sequences

� Finding Cycles

A Wild Iteration 61

We have already seen that iteration can produce very rapidly growing functions
(much like recursion). Here is another example where iteration produces a
rather perplexing result: every orbit ends in fixed point 0, though it looks like it
should diverge towards infinity.

Suppose we write a number in base 2, say

266 = 28 + 23 + 2

We can turn this into the complete binary expansion by writing the exponents
also in base 2, and so on.

266 = 222+1

+ 22+1 + 2

where we really should write 20 instead of 1, but c’mon.

Base Bump 62

Now suppose we replace 2 in the representation everywhere by 3:

333+1

+ 33+1 + 3

Unsurprisingly, this new number is much larger:

443426488243037769948249630619149892887 ≈ 4× 1038

Next, we write this number in complete base 3, and bump the base to 4. We
get something like 3× 10616.

Then we write this number in complete base 4 and bump to 5 . . .

Goodstein’s Theorem 63

Obviously, this process leads to a very rapidly increasing sequence of numbers.

Now suppose we follow the base bump by subtracting 1, so the result will be a
tiny little bit smaller than with a pure base bump. Call such a sequence a
Goodstein sequence.

We expect Goodstein sequences to diverge since the base bump causes a huge
increase, subtracting 1 should really not matter much. Alas . . .

Theorem

All Goodstein sequences converge to 0.

Example? 64

Alas, it is very hard to come up with good examples.

Starting at 3 we get the sequence

3, 3, 3, 2, 1, 0

Starting at 4 we get the sequence

4, 26, 41, 60, 83, 109, 139, 173, 211, 253, 299, . . .

It takes some 10121,210,695 steps to get to 0!

The proof of Goodstein’s theorem uses ordinals and cannot be handled in
Peano arithmetic. But note that the stopping time of these sequences is clearly
computable: just do the arithmetic. Computable functions can be monsters.

� Iteration, Trajectories and Orbits

� Fixed Points

� Goodstein Sequences

4 Finding Cycles

Calculating Transients and Periods 66

How do we compute the transient t and period p of the orbit of a ∈ A under
f : A→ A for finite carrier sets A?

The obvious brute force approach is to use a container to keep track of
everything we have already seen:

a, f(a), f2(a), . . . , f i(a)

and then to compare f i+1(a) to all these previous values.

In most cases, the data structure of choice is a hash table or tree: we can
check whether f i+1(a) is already present in expected constant time or
logarithmic time, respectively. Memory requirement is linear in the size of the
orbit assuming the elements in A require constant space (a fairly safe
assumption, if the elements are big use pointers).

Floyd’s Trick 67

A (simplified version of a) classical problem from the early days of Lisp:
Suppose we have a pointer-based linked list structure in memory and we want
to check if there are any cycles in the structure (as opposed to having all lists
end in nil).

We can think of this as an orbit problem:

A is the set of all nodes of the structure,

f(x) = y means there is a pointer from x to y.

The Problem:

Suppose further the structure consumes 90% of memory, so we cannot afford
to build a large hash table or tree.

Can we compute transients and periods in O(1) space?

A Memoryless Approach 68

At first glance, this may seem quite impossible: if we forget already discovered
elements we obviously cannot detect cycles.

Nonetheless, the following code finds a point on the cycle in the orbit of a.

u = f(a);

v = f(u);

while(u != v) {

u = f(u);

v = f(f(v));

}

Claim

Upon termination, u = v is a position on the cycle.

Moving Pebbles 69

Think of two pebbles u and v, moving at speed 1 and 2, respectively.

The slow pebble u enters the limit cycle at time t, the transient, when the fast
pebble v is already there. From now on, v gains one place on u at each step.
So pebble v must catch up at time s where s ≤ t+ p, where p is the period.

Also note that once we have our foothold on the cycle, we can compute the
period: run around the cycle one more time, counting.

One can make a nice movie out of this. OK, it is pretty boring after all, but
what do you expect.

Example 70

Here the transient is 6, and the period 17.

The pebbles meet at time 17.

Example 71

Same transient and period, but pebble speeds 2 and 3, respectively.

Again, the pebbles meet at time 17.

How about the Transient? 72

Suppose we already know p, the period.

t = 0;

u = a;

v = iterate(f, a, p); // v = f^p(a)

while(u != v) {

u = f(u);

v = f(v);

t++;

}

Claim

Upon completion, t is the transient length.

Proof. v is exactly p places ahead of u. So, when u first enters the cycle, v
has just gone around once, and they meet. 2

Floyd’s Trick 73

Let us assume f to be computable in time O(1) and elements of the carrier set
A to take space O(1).

Theorem

One can determine the transient t and period p of a point in A under f in time
O(t+ p), and space O(1).

Linear time cannot be avoided in general (why?), so this is optimal.

Exercise

The choice of speeds 1 and 2 for the pebbles in Floyd’s algorithm is natural,
but there are other possibilities. Discuss other choices.

Beware of Permutations 74

Floyd’s cycle finding algorithm is an excellent general purpose tool in particular
when the evaluation of the function in question is cheap.

But note that in the special case where the function is known to be a
permutation on a finite domain there is, of course, no need to use Floyd’s or
similar cycle finding algorithms: since the components of the diagram are all
cycles we can simply trace a cycle once to determine its length. So the natural
method to compute cycle length is automatically memoryless (if we assume the
objects in question can be stored in constant space).

Incidentally, determining cycle lengths of permutations is very important for
some advanced counting methods, more later.

The Real Challenge 75

Typically we are not interested in just one map f : A→ A but in a whole
family of maps. For example, we may want

A = {0, 1, . . . , n− 1}
A = {1, 2, . . . , n}
A = 2n

A = Σn

A = full binary trees on n leaves

We need a description that holds for all values of n, preferably in closed form.

Here are some simple examples.

Modular Addition 76

Consider the additive function

fk : Zn → Zn

x 7→ x+ k mod n

fk is clearly injective, so the orbits are all cycles.

Moreover, since fk(x+ d) = fk(x) + d (mod n) all the cycles must have the
same length.

So how many orbits are there?

Proposition

fk has gcd(n, k) distinct orbits, each of length n/ gcd(n, k).

n = 20 77

The stride is k = 3 on the left, k = 8 on the right.

How About Multiplication? 78

Can we come up with a similar analysis for the multiplicative function

gk(x) = k · x mod n

One should expect somewhat greater difficulties here: gk is not injective in
general, so the orbits will have transients.

Moreover, the orbits cannot simply be translated into each other, not even the
periodic parts.

A complete description of the digraph of gk will be much more complicated
than in the additive case.

n = 12, k = 5 79

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8

9

10

11

There are 4 fixed points (0, 3, 6, 9) and 4 2-cycles ((1, 5), (2, 10), (4, 8),
(7, 11)).

n = 12, k = 2, 4, 6, 8 80

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8

9

10

11

The Easy Case 81

Suppose n and k are coprime. In this case gk is injective, all orbits are periodic,
all transients are 0.

That means that for all x there is some p > 0:

x = kp · x (mod n)

For this to hold it suffices that kp = 1 (mod n), so the multiplicative order of
k in Z?

n is an upper bound for the period p. But this bound is not tight, the
choice of x also plays a role.

Exercise

Figure out the details.

Example: Riffle Shuffle 82

Start with an even number of cards, split the deck in half, and then interleave
the two halfs (perfect shuffle, alternate one card from each half-deck).

E.g., starting with the deck [20] one obtains

11, 1, 12, 2, 13, 3, 14, 4, 15, 5, 16, 6, 17, 7, 18, 8, 19, 9, 20, 10

This clearly is a permutation (no cards disappear or are added). Hence, all
transients are 0, and we get the cycle decomposition

(1, 11, 16, 8, 4, 2), (3, 12, 6), (5, 13, 17, 19, 20, 10), (7, 14), (9, 15, 18)

After six riffle shuffles we are back to the original deck of cards: the least
common multiple of 6, 3, 6, 2, and 3 is 6.

The Orbits 83

This is also clear to see when we trace the orbit of the first point in each cycle.

Note that the inverse map is a bit easier to understand: it boils down to
multiplication by 2, modulo 21.

Various Deck Sizes 84

For any n, there must be some number k such that k repetitions of riffle shuffle
on 2n cards return the deck to its original state.

How does k depend on n?

20 40 60 80 100

50

100

150

200

The relationship is a bit complicated, and we will not pursue the issue here.

	Iteration, Trajectories and Orbits
	Fixed Points
	Goodstein Sequences
	Finding Cycles

