
CDM
Memoryless Machines

Klaus Sutner

Carnegie Mellon Universality

10-memoryless 2017/12/15 23:19

1 Zero Space

2 Finite State Machines

3 DFA Decision Problems

Where Are We? 3

We have a description of abstract computability in terms of Turing machines,
and various equivalent models. Abstract here refers to the fact that we totally
ignore resource constraints, such as time, space and energy, that are critical in
actual computation.

Primitive recursive functions are more restricted, but they, too, are much too
powerful for practical computation.

To get more realistic models, we first plunge to the very bottom: machines
without memory. Surprisingly, they still have lots of interesting properties, and
are very useful in practical applications.

Turing Machines 4

aba acab a

work tape

read/write head

finite state control

Very Concrete Computability 5

So far we have seen a description of abstract computability in terms of register
machines and general recursive functions. Abstract here refers to the fact that
we totally ignore resource constraints (time and space).

A more restricted class of computable functions are the primitive recursive ones
– but they, too, are much too powerful for practical computation. Kalmár’s
elementary functions are more realistic.

In modern complexity theory, the class P of polynomial time computable
(decision) problem are generally considered to be an excellent match with the
intuitive notion of efficient computation.

Here is a model that pushes the resource restrictions to the very limit – but still
has many surprising and important applications.

Taming Turing Machines 6

The central problem with general Turing machines is that we have no way of
predicting the amount of tape used during a computation (which could be used
to also obtain a bound on the length of the computation).

So how about simply imposing a bound on the amount of tape that the
machine may use? If the machine attempts to use more tape, the computation
simply fails.

A fairly natural restriction would be to allow only as much tape as the input
takes up originally: think of two special end markers

#x1x2 . . . xn−1xn#

where the head is originally positioned at the first symbol of x. The head is not
allowed to move beyond the two cells marked #.

Linear Bounded Automata 7

This leads to an important class of machines: linear bounded automata (LBA)
and the corresponding class SPACE(n) of problems solvable in linear space;
introduced in their deterministic form in 1960 by Myhill, and in their full
nondeterministic form in 1964 by Kuroda.

Unfortunately, LBAs are still much too powerful and complicated. E.g.,
nondeterministic LBAs can accept every context-sensitive language.

Ominously, the question whether the languages of nondeterministic LBAs are
closed under complement was open for three decades before being answered
affirmatively by Immerman and Szelepcsényi independently.

We need a more stringent condition, something more restrictive than just linear
space.

Space Constraints 8

M

10100
input tape

work tape

aba acab a

qY

qN

A primitive decision algorithm. It is convenient to separate the input
(read-only) of size n from the (read-write) worktape, which has size s(n).

Little Space 9

One might suspect that we get less and less compute power as we decrease the
memory-size function s(n), say, to logn, log logn, log log logn, and so on.

Here is a major surprise:

Theorem (Hartmanis, Lewis, Stearns 1965)

Suppose some decision problem is not solvable in constant space. Then every
Turing machine solving the problem requires space Ω(log logn) infinitely often.

Hence, once we get to s(n) = o(log log n) we might as well have a worktape of
fixed size. The proof is somewhat complicated, see the website.

From Fixed to None 10

But allowing only a constant amount of work tape is already equivalent to
allowing no work tape at all: there are only finitely many possible work tape
contents and head positions.

These finitely many worktape configurations can be coded as part of the finite
state control.

In other words, we move the fixed size tape into the control unit of the Turing
machine and we get Zero Space.

Zero Space 11

Zero Space sounds more impressive, but since we can store a limited amount of
information in the state of the machine, it might be better to talk about
Constant Space.

Again, we do not charge for the size of the input on the read-only tape; the
strings there can be arbitrarily long.

Also, for the time being we will focus on decision algorithms, so we don’t need
an output tape: we can use special Yes/No states to indicate acceptance. This
is the old distinction between acceptors versus transducers, between decision
problems versus function problems.

No Worktape 12

M

10100
input tape

qY

qN

Left-To-Right 13

From the definition of a Turing machine, the read-only input tape can be
scanned repeatedly and the tape head may move back and forth over it.

As it turns out, one can assume without loss of generality that the read head
only moves from left to right only: at each step one symbol is scanned and
then the head moves right and never returns.

Theorem (Rabin/Scott, Shepherdson)

Every decision problem solved by a constant space two-way machine can
already be solved by a constant space one-way machine.

The proof of this result is quite messy, and we won’t go into details. See the
website.

Simplified Configurations 14

Note that configurations for these restricted Turing machines are simpler than
in the general case, all we need is

p x p ∈ Q, x ∈ Σ?

There is no need to keep track of the “left” part of the tape, we can never go
back there.

One step in the computation is then given by a map δ, the so-called transition
function, where

p ax M

1
q x ⇐⇒ δ(p, a) = q

Acceptance 15

The computation on input x ends after exactly |x| steps in some state p
without any input left.

There is no need for a special halting state, we can simply read off the
“response” of the machine by inspecting the last state.

If this state is “good” we think of the machine as having accepted its input;
otherwise it rejects.

Example: Parity and Majority 16

Let’s suppose the input is given as a bit sequence x = x1x2 . . . xn−1xn. Here
are two classical problems concerning these sequences:

Parity: Is the number of 1-bits in x even?

Majority: Are there more 1-bits than 0-bits in x?

Parity requires just one bit: just add the bits in x modulo 2.

On the other hand, Majority seems to require an integer counter of unbounded
size logn bits; we will see in a while that Majority indeed cannot be solved in
zero space.

Parity Checker 17

s = 0;

while(there is another input bit x)

s = x xor s;

return s;

This really computes the exclusive-or of all the bits, which happens to be the
right answer:

s = x1 + x2 + . . .+ xn−1 + xn (mod 2)

Streaming Algorithms 18

We can think of these restricted Turing machines as algorithms that read each
bit in an input stream just once, perform a very simple operation after each bit
is read, and return the answer after the last bit was processed.

initialize;

while(there is another input bit x)

process x; // state transition

return answer;

The algorithm updates its internal state after scanning a new bit (performs a
state transition).

Transition Diagrams 19

An excellent representation for our parity checker is a diagram:

e o

1

1

0 0

The edges are labeled by the input bits, and the nodes indicate the internal
state of the checker (called e and o for clarity, these are the states of the
Turing machine).

Note that similar diagrams don’t work well for ordinary Turing machines.

This pictures are very easy to read and interpret for humans (and useless for
computers).

Complete Information 20

It is customary to indicate the initial state by a sourceless arrow, and the
so-called final states states (corresponding to answer Yes) by marking the
nodes.

e o

1

1

0 0

In this case state e is both initial and final.

“Final state” is another example of bad terminology, something like “accepting
state” would be better. Alas . . .

Another Example 21

0 1 2 3
1 1 1

0 0 0 0, 1

There are 4 internal states {0, 1, 2, 3} and input x will take us from state 0 to
state 3 if, and only if, it contains at least 3 1-bits.

Initial state is 0 and 4 is the sole final state.

Run-length Limited Codes 22

Consider all binary words with the property that all 1-bits are separated by
between 1 and 3 0-bits.

0 1 2 3

0 0 0

1
1

1

Here all states are considered accepting.

Note that there is no transition labeled 0 out of state 3: this is an incomplete
automaton, it “crashes” on input 0000.

Checking Small Divisors 23

A typical primality testing algorithm starts very modestly by making sure that
the given candidate number x is not divisible by small primes, say, 2, 3, 5, 7,
and 11.

Assume n has 1000 bits. Using standard arithmetic to do the tests is not
particularly smart, we want a very fast method to eliminate lots of bad
candidates quickly.

One could customize the division algorithm for a small divisor d but even that’s
still clumsy.

Can we use a scan algorithm?

Mod 5 Base 2 24

Numbers up to 250 in binary that are divisible by 5 (written here in columns,
MSD on top).

Note the regularity of the bit patterns.

Dire Warning: At first glance, it looks like there is self-similarity in this picture.
There isn’t, at least not in any technical sense.

Pictures can be dangerous.

Induction to the Rescue 25

Write ν(x) for the numerical value of bit-sequence x, assuming the MSD is
read first.

Then

ν(x0) = 2 · ν(x)

ν(x1) = 2 · ν(x) + 1

So if we are interested in divisibility by, say, d = 5 we have

ν(xa) = 2 · ν(x) + a (mod 5)

Since we only need to keep track of remainders modulo 5 there are only 5
values, corresponding to 5 internal states of the loop body.

Table Lookup 26

In most implementations, the operation ν would be precomputed into a lookup
table.

In the actual run all that’s needed is then a simple table lookup, depending on
the current state, and the next bit.

0 1 2 3 4

0 0 2 4 1 3

1 1 3 0 2 4

The precomputation may be costly in general (it’s not in this particular case),
but once we have the table performance will be excellent.

Remainders Mod 5 27

0

1

2

3

4

0

1

0
1

0 1

0

1

0

1

Diagrams 28

The last picture is really a (particularly pretty) layout of a directed graph
associated with the machine:

The nodes of the graph are the states of the machine.

The edges correspond to transitions and are labeled by letters.

Note that strictly speaking we have to allow multiple labels: different input
symbols may cause the same transition from one state to another. It is
coincidence that this situation does not arise in the last example.

Alternatively, we could allow for multiple edges and label each with exactly one
symbol. Conceptually, there is little difference between the two approaches but
note that implementation details could vary quite a bit.

On occasion one also ignores the labels and just deals with the underlying
digraph.

Optimality in Time 29

Lower bound arguments are often tricky, but this really is the fastest possible
algorithm for divisibility by 5 as can be seen by an adversary argument.

Suppose there is an algorithm that takes less than n steps.

Then this algorithm cannot look at all the bits in the input, so it will not notice
a single bit change at least one particular place.

But that cannot possibly work, every single bit change in a binary number
affects divisibility by 5:

x± 2k 6= x (mod 5)

for any k ≥ 0.

The Killer App 30

text

pattern
Y

N
FSMconverter

Text Search 31

0

1

3 6 9 12 15 17

4 7 10 13 16 18

2 5 8 11 14

A

C

G A T A T

T

A T A T A

T

A T A T

This machine searches for strings ACGATAT, ATATATA and TATAT.

Back-Transitions 32

A

C

G A T A T

T

A T A T A

T

A T A T

The Algorithms 33

We will shortly discuss closure properties of the languages associated with finite
state machines. It will follow from these general results that a machine
searching for words like ACGATAT, ATATATA and TATAT trivially exists.

The important point is that there are algorithms that construct the machines
very efficiently, given the words as input. For example, the algorithm used in
the last example is due to Aho and Corasick.

These algorithms can be quite sophisticated and clever; there is a whole field
referred to as stringology that deals with them.

However, we will focus on another important algorithmic application of finite
state machines.

Two Threads 34

There are two somewhat separate reasons as to why finite state machines are
hugely important.

They can be used for text processing purposes, and are lightning fast in
this capacity. There is no word processor nor any compiler that does not
use FSMs.

The can be used in a variety of decision algorithms. These algorithms tend
to be more complicated and less efficient but are still very important for
example in model checking.

� Zero Space

2 Finite State Machines

� DFA Decision Problems

The Machine Perspective 36

We can think of our devices as consisting of two parts:

a transition system, and

an acceptance condition.

The transition system includes the states and the alphabet and can be
construed as a labeled digraph.

Definition

A transition system or semi-automaton (SA) is a structure

〈Q,Σ, δ 〉

where Q and Σ are finite sets and δ ⊆ Q× Σ×Q.

The elements of δ are transitions and often written in suggestively as p
a−→ q.

Sequences, Words, Strings 37

It is customary to refer to the input sequences as words or strings.

Given an alphabet Σ one writes Σ? for the collection of all words over Σ, and
Σ+ for the collection of all non-empty words.

In practice, the alphabet is usually one of

2 = {0, 1} (2)

{0, 1, . . . , 9} (10)

{0, 1, . . . , 9, A, . . . , F} (16)

lowercase letters (26)

ASCII (128 or 256)

UTF-8 (1,112,064)

but it is better to keep the definition general. Very large alphabets cause
interesting algorithmic problems.

Runs 38

Suppose A is some semi-automaton. Given a word u = a1a2 . . . am over the
alphabet of A a run of the automaton on u is an alternating sequence of states
and letters

p0, a1, p1, a2, p2, . . . , pm−1, am, pm

such that pi−1
ai−→ pi is a valid transition for all i. p0 is the source of the run

and pm its target, and m ≥ 0 its length. So a run is just a path in a labeled
digraph.

Sometimes we will abuse notation and also refer to the corresponding sequence
of states alone as a run:

p0, p1, . . . , pm−1, pm

Traces 39

Given a run

π = p0, a1, p1, a2, p2, . . . , pm−1, am, pm

of an automaton, the corresponding sequence of labels

a1a2 . . . am−1am ∈ Σ?

is referred to as the trace or label of the run.

Every run has exactly one associated trace, but the same trace may have
several runs, even if we fix the source and target states (ambiguous automata).

Nondeterminism 40

So, a transition system is just an edge-labeled digraph where the labels are
chosen from some alphabet.

In the spirit of Rabin/Scott’s 1959 paper, it is perfectly acceptable to have
nondeterministic transitions

p
a−→ q and p

a−→ q′

Note that these transitions are somewhat problematic from a “real algorithm”
perspective: are we supposed to go to q or to q′?

This idea may sound quaint today, but it was a huge conceptual breakthrough
at the time.

Special Semi-Automata 41

Definition

A semi-automaton is complete if for all p ∈ Q and a ∈ Σ there is some q ∈ Q
such that

p
a−→ q

is a transition.

In other words, the system cannot get stuck in any state.

Definition

A semi-automaton is deterministic if for all p, q, q′ ∈ Q and a ∈ Σ

p
a−→ q, p

a−→ q′ implies q = q′

Thus, a deterministic system can have at most one run from a given state for
any input.

Acceptance Conditions 42

The acceptance condition depends much on the automaton in question but it is
always a condition on the runs associated with a word u.

The (acceptance) language L(A) of the automaton A is the set of all words
accepted by the automaton.

The most basic kind of acceptance condition is comprised of an initial state q0
and a collection of final states F ⊆ Q.

A run is accepting if it starts at q0 and ends in some state in F .

This corresponds to the idea of resetting the automaton to state q0 before the
computation starts, ignoring all intermediate steps, and using only the last
state to determine acceptance.

DFAs 43

Combining the previous acceptance condition with completeness and
determinism produces a particularly useful type of automaton.

Definition

A deterministic finite automaton (DFA) is a structure

A = 〈Q,Σ, δ; q0, F 〉

where 〈Q,Σ, δ 〉 is a deterministic and complete semi-automaton and q0 ∈ Q,
F ⊆ Q.

It is straightforward to see that a DFA has exactly one trace (or run) on any
possible input word.

We use the standard acceptance condition: a run is accepting if it leads from
q0 to some q ∈ F .

Extending the Transition Function 44

It is often convenient to think of the transition function as a map
δ : Q× Σ? → Q defined by primitive recursion over words:

δ(p, ε) = p

δ(p, xa) = δ(δ(p, x), a)

In terms of the extended transition function acceptance can be expressed easily:

A accepts a word u iff δ(q0, u) ∈ F .

Note that for all words x and y:

δ(p, xy) = δ(δ(p, x), y)

Regular Languages 45

Definition

A language L ⊆ Σ? is recognizable or regular if there is a DFA M that accepts
L: L(M) = L.

Thus a regular language has a simple, finite description in terms of a particular
type of finite state machine. As we will see, one can manipulate the languages
in many ways by manipulating the corresponding machines.

In a sense, regular languages are the simplest kind of languages that are of
interest (there are more complicated types of languages such as context-free
languages that are critical for computer science).

No Majority 46

The diagram perspective is useful to show that the Majority language
M = {x ∈ 2? | #0x < #1x } is not regular.

For assume otherwise and let n be the number of states in a DFA accepting
M . By definition, 0n1n+1 is accepted.

But then there is a path from q0 to a final state q, labeled 0n1n+1.

The first part must contain a loop that we can traverse multiple times, leading
to an accepted input of the form 0m1n+1 where m > n+ 1.

Contradiction.

This rather trivial observation is also known at the Pumping Lemma (for
regular languages).

Again: Killer Apps 47

1 Membership in a regular language can be tested blindingly fast, and using
only sequential access to the letters of the word. This works very well with
streams and is the foundation of many text searching and editing tools
(such as grep and emacs). All compilers use similar tools.

2 Another important aspect is the close connection between finite state
machines and logic. Here we don’t care so much about acceptance of
particular words but about the whole language. The truth of a formula
can then be expressed as “some machine has non-empty acceptance
language.” Actually, this becomes really interesting for infinite words
(where the first application disappears entirely).

First, a bit of basic theory.

Fast Acceptance Testing 48

Proposition

For any DFA M and any input string x we can test in time linear in |x|
whether M accepts x, with very small constants.

p = q0; // reset

while(a = x.next()) // next input symbol

p = delta[p][a]; // table look-up

return p in F; // table look-up

Of course, it might take some time to compute the lookup table δ in the first
place, but once we have it acceptance testing is very fast.

Example: Divisibility Testing DFA 49

Example

A = 〈 {0, . . . , 4}, {0, 1}, δ; 0, {0} 〉

where the transition relation, written as a function Σ×Q→ Q, is

δ =
(

0 2 4 1 3
1 3 0 2 4

)
As we have seen, this DFA checks whether a binary number has numerical
value divisible by 5:

L(A) = {x ∈ 2? | ν(x) = 0 (mod 5) }.

Note that the terminology is actually quite bad: a DFA should really be called
a “deterministic complete finite automaton” or DCFA.

Should, but isn’t. Once bad terminology is widely accepted there is no way to
get rid of it.

Example: Checking a Letter 50

A machine that accepts all words over alphabet {a, b} that have an a in the
third position.

A = 〈 {0, . . . , 4}, {a, b}, δ; 0, {3} 〉

0 1 2 3 4
a, b a, b a

a, b a, b

b

Note that state number 4 is superfluous in a way.

Sinks and Traps 51

Definition

A state p in a DFA is a trap if for all symbols a: δ(p, a) = p.

A state in a DFA is a sink if it is a trap and is not final.

Note that we could remove a sink from a DFA without changing the
acceptance language. However, this would break the completeness condition
(though not determinism).

This is really an implementation detail; on occasion completeness is important
and other times it is not.

Warning: some authors allow incomplete machines under the name DFA to
accommodate sink removal. We will always refer to these devices as partial
DFAs (PDFAs) or incomplete DFAs.

� Zero Space

� Finite State Machines

3 DFA Decision Problems

The Membership Problem 53

Given any language one is faced with a natural decision problem: determine
whether some word belongs to the language. In this particular case the
language is represented by a DFA.

Problem: DFA Membership (DFA Recognition)
Instance: A DFA M and a word x.
Question: Does M accept input x?

Lemma

The DFA Membership Problem is solvable in linear time.

As we will see, there are other representations for regular languages where the
membership problem is more difficult to solve. This is of great practical
importance; many pattern matching problems can be phrased as membership in
regular languages but using descriptions that are more difficult to deal with
than DFAs.

More Decision Problems 54

Apart from membership testing there are several more complicated decision
problems associated with finite state machines that have efficient solutions as
long as the machine is a DFA. Again, these are crucial in many applications.

Problem: Emptiness
Instance: A DFA M .
Question: Does M accept any input string?

Problem: Finiteness
Instance: A DFA M .
Question: Does M accept only finitely many strings?

Problem: Universality
Instance: A DFA M .
Question: Does M accept all input strings?

Easy Decidability 55

Theorem

The Emptiness, Finiteness and Universality problem for DFAs are decidable in
linear time.

Proof.

Consider the unlabeled diagram G of the machine. Emptiness means that there
is no path in G from q0 to any state in F , a property that can be tested by
standard linear time graph algorithms (such as DFS or BFS). 2

Exercise

Show how to deal with Finiteness and Universality.

Optimality in Size 56

A general problem related to computation that we have not yet encountered is
program size complexity:

What is the (size of the) smallest program for a given task?

Note that this is somewhat orthogonal to the usual time and space complexity
of an algorithm: here the issue is the size of the code, not it’s efficiency. Can
you program a SAT checker on your wrist watch?

In general identifying smallest programs is very hard. In particular for
Turing/register machines the problem is highly undecidable.

But for DFAs there is a very good solution.

Equivalence and State Complexity 57

It is easy to see that the same language can be recognized by many different
machines.

Definition

Two DFAs M1 and M2 over the same alphabet are equivalent if they accept
the same language: L(M1) = L(M2).

Given a few equivalent machines, we are naturally interested in the smallest
one. In some sense, the smallest machine is the best representation of the
corresponding regular language.

Definition

The state complexity of a DFA is the number of its states.

The state complexity of a regular language L is the size of a smallest DFA
accepting L.

Existence 58

Note that the state complexity of a regular language always exists, albeit for a
silly reason: the natural numbers are well-ordered.

However, there are two potential problems that could make a smallest machine
somewhat useless.

There might be several DFAs of minimal size.

Even if there is only one (up to isomorphism), larger DFAs for the same
language might have no reasonable connection to the minimal one.

The first problem would make it difficult to compare languages on the basis of
their smallest machines.

The second problem could make it difficult to obtain a smallest machine given
an arbitrary one.

We will see that for DFAs neither problem occurs.

Computing State Complexity 59

Naturally there is a computational problem lurking in the dark:

Problem: State Complexity
Instance: A regular language L.
Solution: The state complexity of L.

As we will see, state complexity is always computable but for efficient solutions
we need L to be represented by a DFA.

Note that we could ask similar questions for Turing machines
(Kolmogorov-Chaitin complexity). Alas, in this general setting everything
becomes highly undecidable. For example, one cannot determine the smallest
Turing machine that writes a given target string on the tape and then halts.

State Complexity: An Example 60

There are good algorithms to calculate the state complexity of a given regular
language (unless it is so large that we cannot actually build a DFA for it), so
state complexity becomes really interesting only when we consider a class of
languages.

For example, one might ask what is the state complexity of the languages

La,k = {x ∈ {a, b}? | xk = a }.

Thus x ∈ La,k iff the kth symbol in x is an a.

For positive k this is not a problem: we can just skip over the first k − 1
symbols and then verify that xk really is a.

0 1 2 3 4
a, b a, b a

a, b a, b

b

The Nasty Case 61

But what if k is negative?

Meaning that we are looking for the |k|th symbol from the end. E.g,

La,−3 = {aaa, aab, aba, abb, aaaa, aaab, aaba, aabb, . . .}

The crucial problem here is that the DFA does not know ahead of time when
the last input will appear. We can’t just go backwards from the end.

This may seem like a preposterous restriction, but streams do behave just like
this; we don’t know when the last input will come along.

Exercise

Figure out the state complexity of La,k for negative k. No strict lower bound is
required at this point, just come up with a machine that feels best possible.

Numbers and DFAs 62

Here is a much harder problem that deals with standard radix representations
of integers.

Write νB(x) or simply ν(x) for the numerical value of string x written in base
B, so x ∈ {0, 1, . . . , B − 1}?.

Also, one has to be a bit careful about the MSD and LSD. Unless otherwise
noted, we assume that the MSD is the first digit, so

ν(xkxk−1 . . . x1x0) =
∑
i≤k

xiB
i.

If the LSD is first we have a reverse radix representation.

We already know that divisibility by a fixed number m can be tested by a DFA
with respect to base B = 2. But there are many other, useful numeration
systems and is is not entirely clear whether one can build DFAs for all of them.

Divisibility in Base B 63

Lemma

Divisibility by m can be tested by a DFA in any base B.

Proof.

We can construct a canonical Horner automaton for this task.

Keep the state set Q = {0, 1, . . . ,m− 1}.
Change the transition function to

δ(p, a) = p ·B + a (mod m).

Initial state and only final state is 0.

Since δ(q0, x) = ν(x) (mod m) this works.

2

How About State Complexity? 64

But note that that in some special cases this construction is not very clever.

For example, to check whether a number written in base 5 is divisible by 5 the
canonical solution looks like this:

Z N

1, 2, 3, 4

0

0 1, 2, 3, 4

This makes it tempting to consider the state complexity of divisibility
languages: what is the smallest possible DFA that recognizes one of these
languages?

Experimental Data 65

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3
4 3 4 2 4 3 4 2 4 3 4 2 4 3 4 2
5 5 5 5 2 5 5 5 5 2 5 5 5 5 2 5
6 4 3 4 6 2 6 4 3 4 6 2 6 4 3 4
7 7 7 7 7 7 2 7 7 7 7 7 7 2 7 7
8 4 8 3 8 5 8 2 8 5 8 3 8 5 8 2
9 9 3 9 9 4 9 9 2 9 9 4 9 9 4 9
10 6 10 6 3 6 10 6 10 2 10 6 10 6 3 6
11 11 11 11 11 11 11 11 11 11 2 11 11 11 11 11
12 5 5 4 12 3 12 4 5 7 12 2 12 7 5 4
13 13 13 13 13 13 13 13 13 13 13 13 2 13 13 13
14 8 14 8 14 8 3 8 14 8 14 8 14 2 14 8
15 15 6 15 4 6 15 15 6 4 15 6 15 15 2 15
16 5 16 3 16 8 16 3 16 9 16 5 16 9 16 2

m :↓, B :→.

Data Mining 66

The problem is to extract useful information from this table.

Unfortunately, there aren’t too many patterns that are clearly visible.

For m a prime things seem straightforward.

Base B = 2 seems potentially doable (but not obvious).

The problem was solved a few years ago by a high-school student (Boris
Alexeev, 2nd place Intel STS 2004). Alas, the result is not very pretty.

More later when we have the right tools available.

Hard Question 67

How about more complicated properties of numbers?

Suppose we want to recognize powers of 3 written base 2.

This looks rather complicated. In fact there is no DFA that could recognize
these numbers (but the proof is quite hard, see Cobham’s theorem).

	Zero Space
	Finite State Machines
	DFA Decision Problems

