CDM

Induction

Klaus Sutner

Carnegie Mellon Universality

10-induction 2017/12/15 23:20

020

@ Induction and Recursion

m Natural Numbers

m Induction Proofs

m Well-Orders
m Lists
m Trees

Self-Similarity

The key idea in induction is to consider an

Object that is similar to parts of itself.)

So this object is somehow composed of smaller, yet similar objects. Since the
smaller components are similar to the large object, they in turn can be
decomposed into yet smaller ones, and so on.

Clearly, there are two scenarios:

@ the descent goes on forever,

o after finitely many steps, the descent reaches indecomposable atoms, and
stops.

For computational purposes, the finite descent case is much more important,
but in geometry the infinite version is easier to understand.

Droste Effect

Top Down: Recursion

In order to describe a terminating decomposition process carefully, we need

@ a collection of indecomposable atoms
and

@ one or several destructors.

We can apply a destructor to any composite (non-atomic) object and obtain
“smaller” ones, until ultimately we get atoms.

For example, the computation of 50! contains a similar sub-computation for
49!, which contains a sub-computation for 48! and so on, down to 0! where the
recursion stops.

Bottom Up: Induction

We can also turn decomposition upside down: with start with atoms and then
use constructors to build composite objects. So this time we have

@ a collection of indecomposable atoms
and

@ one or several constructors.

We are only interested in the case where a constructor applies to finitely many
objects. Hence termination is not really a problem here, every composite object
can be reached after finitely many steps.

For example, we understand the computation for 0! and can use it to build up
the computation of 1!, 2!, 3! all the way up to 50!.

Induction versus Recursion

In mathematics one typically speaks about an inductively defined structure (or
set). In computer science we have recursive datatypes which are really the
same thing.

In general, induction refers to the bottom-up approach whereas recursion refers
to the top-down approach. Implementation detail may differ, but the
underlying idea is the same.

As we will see in a moment, induction can be used in particular to construct
proofs and is absolutely critical in many arguments in number theory,
combinatorics and data structures.

But somehow, no one ever seems to talk about a “proof by recursion.”

Proofs versus Definitions 8

Suppose we have some class C' of inductively defined structures.

Definitions We can use either induction or recursion to define various new
functions and relations on C'.
This allows us to perform all kinds of computations.

Proofs Then we use induction to prove the critical properties of these
functions and relations.
This allows us to reason about these computations.

Often these proofs are very mechanical, they almost write themselves. Except
that it's not always clear which direction to move in.

Notation

It is customary to think of the constructors as mappings and to write
b= S(a1,az,...,axr)

for the object b obtained by applying the kary constructor S to objects a1, ...,
Qj.

That's fine, but be clear that this is just syntactic sugar, we might as well have
written
b= Saiasz...ax

or perhaps
b= Qakak_l...al;SD

Destruction 10

In the opposite direction, given a compound object
b=S(ai,...,ar)

we can use destructors to obtain the components a;.

Moreover, in all cases of interest to us, this decomposition process is unique: b
cannot be produced in any other way than as indicated. In other words, the
constructors always produce new objects.

This is not an essential feature, but often a very useful one.

® Induction and Recursion

© Natural Numbers

® Induction Proofs

Well-Orders

m Lists

® Trees

Constructing the Natural Numbers 12

We can think of the natural numbers as being constructed from

o the atom 0
and

@ the constructor S, the successor operation.

Thus we obtain 0, S(0), S(5(0)), S(S(5(0))), ...

Of course, there are much better notation systems, but the goal here is to
define the actual objects, not to write them down in an algorithmically
attractive way.

The Constructor 13 Naturals in Set Theory 14

If you are a friend of set theory you will want to think of S as some kind of

function. We can think of 0 as () and S(z) = z U {z}.

For the construction to work, all we need to know about S is: Let's say that a set N is closed if 0 € N and « € N implies S(z) € N.

S(x)=S@y)=>z=y Definition (Natural Numbers, inductive style)
S(z) #0 The set of natural numbers N is the least set that is closed.
In other words, S must be injective and 0 cannot lie in its range. By injectivity M "
L . Least” here is meant in the sense of set inclusion.
the decomposition is unique.
If you prefer, you can write this impredicatively as

Alternatively, we could think of S as an uninterpreted function symbol so that _ .

the “natural numbers” are just the terms 0, S(0), S(S(0)), ... This approach N= m{ 5 || 27 3 Jeszd) J

collides a bit with our intuition but there is nothing fundamentally wrong with

it.
Defining Predicates 15 Defining Arithmetic 16

Slightly more interesting is the predecessor function:
Since every element z of N is either 0 or (uniquely) of the form z = S(y), we
can use this inductive structure of N to define a simple predicate as follows. p(0) =0
p(S(x)) ==
Z(0) = tt And here is additi
nd here Is addition:
Z(S(x)) =ff
This is a zero-test: it returns true iff the input is 0. add(z,0) = z
add(z, S(y)) = S(add(z,))

Multiplication 17 Peano 18

And multiplication:

mult(z,0) =0
mult(z, S(y)) = add(z, mult(z, y)))
And so on. We can build all standard arithmetic functions this way.

This was first noticed by Grassmann and Dedekind in the middle of the 19th
century.

G. Peano gave an axiomatization of the natural in the late 1800s. We'll write
number instead of natural number.

o 0 is a number.

@ The successor of a number is a number.

@ 0 is not a successor.

@ Two different numbers have different successors.

o If a property obtains at 0 and is inherited by the successor of every number
with this property, then this property holds of all numbers.

The last axiom is the basis for proofs by induction.

A Closer Look 19

Peano’s system is based on 3 basic concepts

@ number
@ zero

@ successor

and describes the relationship between these concepts.

Unfortunately, there are many unintentional ways one can interpret these
concepts: zerois 1 € Q, S(z) = x/2 and number = {1/2' € Q|¢>0}.

This problem cannot be fixed in first-order logic.

Weyl 20

In his 1919 pamphlet “Das Kontinuum,” Hermann Weyl emphasizes the
importance of this approach:

...dass die Vorstellung der Iteration, der natiirlichen
Zahlenreihe, ein letztes Fundament des mathematis-
chen Denkens ist—trotz der Dedekindschen Kettenthe-
orie.

... that the concept of iteration, of the natural number-
sequence, is the ultimate foundation of mathematical
thought—in spite of Dedekind'’s theory of chains.

Weyl's proposal got drowned out by set theory and type theory, but he makes a
very good point.

® [nduction and Recursion

m Natural Numbers

© Induction Proofs

Induction Proofs 22

We can now use induction to construct proofs for these inductively defined
functions. To wit:

In order to establish some assertion (z) for all z € N we need to

o Establish ¢(0)

m Well-Orders and
o show that ¢(z) implies ¢(S(z)).
m Lists
It is crucial that x in the second part is a free variable, it stands for a generic
natural number and can not be assumed to have any special properties.
m Trees
More Formally 23 Warmup 24

To prove some assertion about all natural numbers, say, Vx ¢(z), it suffices to
show

@(0) AV (p(x) = ¢(5(x))) J

Definition
This is called the Induction Principle on N (IND).

(IND) is crucially important in any theory of arithmetic, it is enshrined in the
induction axiom schema of Peano arithmetic.

As an example, let us prove that the function add from above is commutative.
We will need a few auxiliary results.

Claim

add(0,y) =y

Base case: add(0,0) =0

Inductive step: add(0, S(y)) = S(add(0,y)) =1 S(y).

Claim
add(z, S(y)) = add(S(z),y)
Base case: y =0
add(z, S(0)) = S(add(z,0)) = S(x) = add(S(z),0)
Inductive step:

add(z, 5(S(y))) = S(add(z, S(y))) = S(add(S5(x), y)) = add(S(z), S(v))-

Commutativity 25 Standard Notation 26
. It is time to lighten notation a bit. We can think of the standard numerals as
Claim o
abbreviations for nested S-terms:
add(z,y) = add(y, z)
Base case: y = 0 is Claim 1. 1=25(0),2=5(1) = 5(5(0)),3 = S(2),
Inductive step: and so on. Then
add(z, S(y)) = S(add(z,y)) = S(add(y, z)) = add(y, S(z)) =c2 add(S(y),). 2dd(3,2) = S(add(3, 1)) = S(5(add(3,0))) = S(5(3)) = 5(4) = 5
and things work as advertised.
L. Of course, we would usually write = 4 y instead of add(z,y), but that is just
This is admltt.edly a bit tedu?us, but note that .the .ar.gument is crystal clear, syntactic sugar (and more work for the parser, though it's easier on human
there are no hidden assumptions or appeals to intuition. eyes)
Induction and Arithmetic 27 Summation Identity by Picture 28
There is a secret conspiracy among mathematicians that requires the following, ° ° ° ° ° ° []
unbearably boring, exercise to be part of any discussion of induction.
° ° ° ° ° [J []
Show that .
Zi:?z(n+1)/2 b ° ° b ® ® ®
i=1
for all natural numbers n. o o d ° ° ° °
(] (] [[[[
Note that one can establish this result (apparently) without induction: the
average of the n numbers is (n + 1)/2, so the sum must be n(n + 1)/2. °)))))
Of course, inquisitive minds would want to know what we mean by average,
and how exactly the result follows. Averages may sound patently harmless, but
how about the following?
There is a proof in this picture, somewhere, but it is not exactly clear how we
would formalize this argument. Could a computer perform this type of proof?
Detailed Induction Proof 29 More Summation ldentities 30

We are trying to show

3

. n(n+1)

V=

4 2
i=1

o Base case: Z?:l i=0= % clearly true.

@ Induction step:

Assume Y7 i = w
n+1 n
i=Y i+ ((n+1)
i1 i=1
_ 7L(n2+ 1) +(n+1)
(n+1)(n+2)

Done.

A very similar argument shows that

iiz _n(n+1)(2n+1)
a 6
i=1

The assertion here is p(n) = 31 i* = n(n + 1)(2n + 1) /6.
It is straightforward to check that ¢(0) holds.

The only difference between this and the previous argument is that the
algebraic operations required to verify that ¢(n) implies ¢(n + 1) are slightly
more complicated.

Automatic Induction 31 Proving ldentities 32
Equivalently, we have to show that certain terms are identically 0:
In fact, the whole procedure is so routine that many summation identities can
be “proved automatically” using a computer algebra system to do the dirty f(0)—g(0)=0
work. The general idea is to show fin+1)—gn+1)+g(n)=0
n
Z f@G) = g(n) For example, if the functions in questions are polynomials this is quite
i—0 straightforward and can be handled by a standard simplification routine in a
modern computer algebra system.
Here g(n) is supposed to be a reasonably simple function, a so-called closed
form. Polynomials are OK, exponentials, factorials, and a few more exotic Of course, this approach requires prior knowledge of the closed form solution of
functions. the summation. Some CAS have tools to determine these closed forms in some
cases.
Once we have g(n), the induction proof boils down to show that
Example
F0)=9(0) Mathematica can simplify the following summation.
f(n+1) = g(n + 1) — g(n)
3 o _ on+l/ 3 2 '
The induction is now replaced by establishing two identities with free variables. ZZ 28 =2"""(n"—3n"+9n —13) + 26
i=1
Recursive Summation 33 Triangulations and Tribulations 34
The real reason this approach works is that summation itself is a recursive
procedure: But note that not all induction proofs are quite so straightforward. Here is a
0 little lemma in plane geometry.
D f@) =10
i=0 Place n distinct points into the interior of an equilateral triangle
n+t1l n (some may be collinear). Then draw additional lines between
Z [= Z f@)+ f(n+1) these points and the vertices of the triangle until all the regions
i=0 i=0 are themselves triangles.
Or, to make it look more like a program: Claim: There are exactly 2n + 1 regions in the fully triangulated
figure.
sum(0; f) = f(0)
sum(n+1; f) = sum(n;) + f(n+ 1)
Since we have no information about the placement of the points this looks like
So we are using inductive reasoning to describe an inductively defined function. an induction problem.
The process is so mechanical (though by no means trivial), that the CAS can
perform it automatically.
Induction “Proof” 35

Claim

There are exactly 2n + 1 regions in the fully triangulated figure.

Proof.

Induction on n, the number of points.
Base case: For n =0 or 1 the claim clearly holds.

Induction step:
Add one more point p to the figure.
p is either in the interior of a triangle or on a line.

In either case, completing the triangulation produces two more regions.

Icosahedron 38
Graph of the Icosahedron 39 Exercises 40
Exercise
Explain exactly what went wrong in the induction proof.
Exercise
Give a valid proof for the triangulation claim.
Alas, there is a problem. While the claim holds for the triangulation above, it
cannot be generated by the steps in the induction argument.
Least Element Principle 42

®m Induction and Recursion

m Natural Numbers

m Induction Proofs

© Well-Orders
m Lists
m Trees

Induction on N is so useful that it is worth to try to find alternate forms (which
may be easier to use in some circumstances).

The first variant is an assertion about the order (N, <) .

Definition (LEP)

Every non-empty subset of N has a least element.

Proposition

(LEP) and (IND) are equivalent.

You might argue that both (IND) and (LEP) are clearly true, so they are
trivially equivalent—but that is emphatically not what we mean.

Instead, we claim that given a weak theory of the natural numbers a
background, adding (IND) will allow us to prove (LEP), and conversely.

Proof 43 Proof, contd. 44
Now assume (IND).
Suppose A C N has no least element and consider the assertion
Proof. Assume (LEP). p(n)=Vz<n(z¢A)
Suppose we have ¢(0) and YV (p(z) = ¢(x + 1)) for some .
PP 90() (pl@) = o 2 ? Then ¢(0) holds: otherwise 0 € A would be the least element.
If (IND) were to fail for ¢ there would have to be some a € N so that —p(a). o o .
Likewise, ¢(n) implies ¢(n + 1): otherwise n + 1 would be the least element of
But then
A={zeN|-p(x
{ | —ela)} By then by (IND) Vnp(n) and A is empty. Done.
is non-empty, hence has a least element ao by (LEP). 5
Clearly, ap # 0 by the base case. But then ¢(ap — 1) by definition of A. Hence
¢(ao) holds by the induction assumption above, contradiction.
While (LEP) and (IND) are equivalent the Least Element Principle has the
advantage that it generalizes nicely to more complicated situations: there is no
mention of the successor function.
Here is another way one can get rid of the successor function.
Strong Induction 45 Example: Prime Divisors 46
Call a formula p(z) inductive if Example (Prime Divisors)
Va (Vz <zp(z) = o()) Every integer n > 2 has a prime divisor.
Definition (SIND) We need to know that all m, 2 < m < n, have a prime divisor in order to get a
o . prime divisor for n + 1.
If o(z) is inductive, then Vz ¢(z).
Similar problems are often encountered in parsing: we need to have dealt with
. . . . all the subexpressions (of unpredictable size) before tackling the main
The part Vz < x ¢(z) functions like the Induction Hypothesis. expression.
At first glance, it looks like we have lost the base case.
Not to worry, it's still there, just let z = 0: V2 < 0¢(z2) is vacuously true: there In programming, (SIND) corresponds to recursive functions where f(n) is
are no z < 0 in N. Hence, we have to prove ¢(0) from scratch, just as before. .deﬁned n terms. of arbitrary f(’)’_’ <7 not. just f(n—1). A typical and
important case is when the recursion looks like
The at.ivantage of (SIND) over (IND) is that we have a whole collection of Ffm) =...f(ln/2)) ... f(Tn/2])...
induction hypotheses, not just one. On occasion, that is necessary for the proof
to go through. Note that this type of recursion terminates in O(logn) steps.
Example: Coloring Polygons 47

Claim: Let A be a triangulated convex polygon on n > 3 nodes. Then we can
color the nodes with 3 colors so that no two adjacent nodes have the same
color.

\\
/

A solution.

Let P(n) be the colorability claim for all triangulated n-gons. We need to show
that P is inductive.

The claim clearly holds for n = 3.

So assume n > 3.
Consider a triangle with nodes p, ¢ and r.

Say, the line segment pq lies on the boundary of A.

Case 1: gr is also on the boundary.
Remove point gq.

The remaining figure B is a convex polygon on n — 1 points and has a coloring
by IH. Clearly, the coloring can be extended to q.

Case 2: Only pq is on the boundary.
Remove pq to obtain two convex polygons joined at 7.
Call them B and C where pisin B and ¢ in C.

Coloring Triangulations 51 Exercises 52
Exercise
By IH we can color both B and C. Fill in all the gaps in the last proof.
Moreover, we can make sure that r has the same color in both pieces: just
rename the colors. .
Exercise
If pin B and g in C have different colors we are done. There is more geometric way to find a coloring. Explain informally how this
method works.
Otherwise change the color of ¢ in C' (but not of p). Done.
[m}
Exercise
Then give a strict proof of your method. Most likely your proof will involve
induction on the number of nodes.
nil novis sub solem 53 Proof 54

So is (SIND) really a new induction principle?

Proposition
(LEP), (IND) and (SIND) are all equivalent.

Of course, both (IND) and (SIND) are true, we are not making the utterly
useless claim that true is equivalent to true.

The real claim is that, using only very weak axioms, the assumption of (IND)
allows us to give a short proof of (SIND).

Conversely, the assumption of (SIND) allows us to give a short proof of (IND).

The two principles have the same proof power.

Assume (LEP).
Suppose ¢ is inductive: Vz < z¢(z) = ¢(z) for all z.

If (SIND) failed, we could invoke the (LEP) to define the set of
counterexamples
A={aeN|p@)}

where A is non-empty, hence has a least element ag. But then Vz < ag ¢(2)
by definition, so ¢(ao), contradiction.

Hence (LEP) implies (SIND).

Proof, Il 55 Proof, Il 56
Now assume (IND).
Suppose A C N has no least element and consider the assertion
n)=Ve<n(xé¢A
Assume (SIND). e(n) <n(z¢A)
Suppose we have ¢(0) and Yz (¢(z) = p(x + 1)).
Let ®(z) =Vz < z¢(2). Then ¢(0) holds: otherwise 0 € A would be the least element.
Then @ is inductive and it follows that ¥z (). Likewise, p(n) implies ¢(n + 1): otherwise n + 1 would be the least element of
Hence (SIND) implies (IND). A.
By then by (IND) Vn ¢(n) and A is empty. So (LEP) holds and we are done.
The argument for (IND) is entirely similar.
O
Modular Induction 57 Well-Orders 58
Yet another variant of induction that is often useful in computer science is the Recall that we interested in chains of decomposition steps that are guaranteed
following Modular Induction Principle (MIP). In order to show Vx p(x) it to terminate: after finitely many steps an atom must appear. Is there a
suffices to establish mathematical concept that can make this idea precise? And, perhaps,
generalize beyond just the natural numbers? Here is one attempt at
o(0) AV (p(x) = o(22) A p(22 + 1)) generalization, using (LEP) as the starting point.
Of course, this principle generalizes to other moduli, but the binary case is Definition
probably the most important since we are often dealing with binary expansions
of natural numbers. Suppose < is a strict partial order on some set A. < is well-founded if
V0 #X C A (X has a <-least element).
As an example, consider the Thue sequence T),, a binary sequence defined by .
Ty = 0 and If the order is total then we speak of a well-order.
T o— T2 if n even,
"7)Tw_1 otherwise. By —<-least element we mean some a € X such that Vo € X (z £ a).
Then (MIP) shows that In other words, (LEP) holds for (A, <) rather than (N, <).
T, = digsum(n) mod 2 In dealing with recursive datatypes we often don’t have a total order, just a
partial one — which does not affect the applicability of induction.
Descending Chains 59 Examples 60
Lemma e (N, <)
< is well-founded if, and only if, there is no infinite descending chain o (N,|) where | stand for “divides’

To ™= T1 = T2 > ... =Ty ™= ...

Proof.
Suppose we have a strictly descending chain (z;) in A.
Then A= {z;|i>0} has no least element.

On the other hand suppose A has no least element. Pick z¢ € A arbitrary.

By induction, choose an element x,t1 € A smaller than z,, the current tail
element of the sequence. lterating we obtain a strictly descending chain.

Note that this direction requires something like the Axiom of Choice. O

@ words with length-lex ordering
e < on N x N defined by
(a,b) < (a',b) <= (a<d)V(e=d Ab<})
This is the strict lexicographic order on N2
o finite lists with length ordering or sublist ordering

o finite trees with subtree ordering

We'll come back to the last two examples.

Counterexamples 61 Induction on WOs 62
To apply inductive reasoning, we have to deal with predicates that behave
o (N,>) properly with respect to the well-founded relation. Here is the set-theoretic
version of proper behavior.
e (Z,<) or (Q,<) or (R, <)
Definition
° ‘;”‘;rd;b‘”:ztizxfzg;;gh: °'d§”(';§l; N Let (A, <) be well-founded.
B C Aisinductive if Vo € A(Vz <2 (2 € B) > z € B).
o triangles with inclusion (or size by area)
o (BP(N),C) Theorem (Induction Theorem)
Let (A, <) be well-founded and B C A inductive. Then B = A.
Here is a nasty one: define a relation on N by the taking the transitive closure
of Proof. The proof uses the (LEP) for the well-founded relation.
z<2¢ and 3z+1 < forzodd x> 1 Suppose there is a counterexample, let a be the least such.
Is there a descending chain? Then by definition, ¥z < az € B. But then a € B, contradiction.
Tame Sets of Reals 63
® Induction and Recursion
It is time for a hard example of an inductive structure, certain tame subsets of m Natural Numbers
the reals.
It was rec.ognlzed more than.a century ago that the collection of all subse.ts of ® Induction Proofs
the reals is hopelessly complicated. For example, one cannot even determine
whether there is a set of reals whose cardinality lies strictly between the
cardinality of N and R (Cantor’s infamous Continuum Hypothesis). ® Well-Orders
Fortungttely, for most purposes one only needs to deal with fairly tame sets of
reals. Emile Borel came up with a particularly useful definition of a)
well-behaved yet large family of sets of reals. O Lists
Borel sets are defined inductively as follows.
m Trees
Axioms for Lists 65 Decomposition 66

Fix some ground set A. Here is an inductive definition of the collection List(A)
of all lists over A.

Suppose a € A and L € List(A).

o Atom: the empty list nil.

@ Constructor: the prepend operation prep(a, L).

To lighten notation we usually write a :: L instead of prep(a, L).

What is ordinarily written as the list (a1, az,...,a,) is now represented by the

composite object

an :onil

This is a basic idea in Lisp and has since been incorporated in many
programming languages.

We can introduce destructors

head : List(A) — A
tail : List(A) — List(A)
such that
K = prep(a, L) implies a = head(K),L = tail(K)

Note that both operations are undefined for nil but for n > 0 we have

L=aj:as:...:ap::nil
yields
head(L) = a1
tail(L) = az = ... = ap :nil

The Inductive Set 67 Structural Induction on Lists 68
Theorem (Induction for Lists)
Suppose X C List(A), nil € X and for all L € X, a € A we have
Qne usually does not bother to spell this out, but as before for N, we want prep(a, L) € X.
List(A) to be the least set that Then X = List(A).
@ contains the atom nil
Informally: any property that nil has, and that is inherited by L from tail(L),
@ contains prep(a, L) for any a € A whenever it contains L. must already hold for all lists.
As before for natural numbers, this inductive framework can be used to
Just as in the case of N, this minimality condition excludes weird and o define operations on lists, and
unintended monsters like infinite lists. o prove basic properties these operations.
Note that when A = {e} then we are basically dealing again with the natural
numbers, so this is a direct generalization.
Left and Right 69 More Operations 70
Here is a definiti f di fi k.
One could also use an append operation instead of prepend (see below for €re 15 a definition ot append In our framewor
definitions). As a result, there are two types of induction.
app(a, nil) = a :: nil
Standard induction on the left: app(a,b:: L) = b :: app(a, L)
o Base case (empty list): show ¢(nil)
@ Induction step: Joining two lists together
assumin L), show rep(a, L
g (L) @(prep(a, L)) join(nil, K) = K
Alternatively, we can use induction on the right: join(a :: L, K) = a :: join(L, K)
@ Base case (empty list): show ¢(nil)
@ Induction step:
assuming ¢(L), show (app(a, L)) For legibility we often write L :: a instead of app(a, L) and K :: L instead of
join(K, L).
Careful, sometimes one version is significantly easier than the other. Careful with parens, though. The law for append says
(b::L):za=b:(L::a).
Yet More Operations 71 Mixed Operation 72

Erasing all occurrences of a from a list

erase(nil) = nil
erase(a :: L) = erase(L)
erase(b:: L) = b:: erase(L) a#b

Keeping the first occurrence of a:

keep1(nil) = nil
keepl(a :: L) = a :: erase(L)
keepl(b:: L) = b :: keepl(L) a#b

The objects involved need not all be lists.

For example, we can define the length of a list as follows:
len(nil) =0
len(a:: L) =len(L) + 1

We will use the naturals informally here, but one could express everything quite
easily in terms of the inductive definitions from above.

Claim
len(join(K, L)) = len(K) + len(L)

Proof 73

Claim: len(join(K, L)) = len(K) + len(L)

Proof.

Base case: K = nil

len(nil :: L) = len(L) = 0+ len(L) = len(nil) + len(L)

Induction step: K =a :: A.

len((a:: A):: L) =len(a:: (A L))=1+len(A:: L)
=1+len(A) +len(L) = len(K) + len(L)

Efficiency Considerations 74

Claim

The basic operations empty, head, tail and prep can all be implemented in
O(1) time.

@ app, join and erase are all linear time.

@ nodup is quadratic time.

Let n = |L|, from repeated calls to erase get 3.7 | O(n — i) = O(n?).

There is a faster algorithm based on sorting (takes O(nlogn) steps), followed
by a scan (takes linear time).

Exercise
O
Do both algorithms produce the same output?
Pairs 75 Reversal 76
Forming all pairs (ai, b:) from two given lists (a1,...,an) and (b1, ..., bn) Here is a definition of the reversal operation on lists:
pair(nil, nil) = nil rev(nil) = nil,
pair(a :: L,b :: K) = (a,b) :: pair(L, K) rev(a: L) =rev(L) : a
Recall that (a,b) is just short for prep(a, prep(b, nil)).
Note that this operation assumes input lists are of equal length. The output
type is a list of lists. If you worry about implementation this may look unappealing: append as
defined is linear time on singly-linked lists, so this definition would produce a
: quadratic time reversal.
Exercise
. lution: ch the data struct .
Implement a class NList that provides arbitrarily nested lists of, say, integers, Solution: change the data structure
together with a nice collection of operations. Don’t worry about implementation details too soon.
A Reversal Proof 77 Proof Fatigue 78

Claim
rev(L ::a) = a ::rev(L) for all L, a.
Proof.

Base case: L = nil

rev(nil :: a) = rev(a :: nil)

=rev(nil) :: a
=nil::a
=a :nil

Induction step: let L =0 :: K.

rev((b:: K) ::a) =rev(b:: (K :: a))

=rev(K ::a):: b
=(a:rev(K))::b
=a: (rev(K) :: b)

Note that every single step in this type of proof is really simple: we only need
to decide which axiom to use and when to apply the induction hypothesis.

This type of argument is called equational logic and is relatively easy to
automate.

Alas, for humans it's not so simple: everyone's eyes glaze over after half a
dozen steps. Plus, it's really easy to make silly mistakes.

Exercises 79

Exercise

Prove the following claims by induction on lists.

Claim
rev(L :: K) =rev(K) ::rev(L) for all L, K.

Claim
rev(rev(L)) = L for all L.

Exercise

Write rot(L) for the result of rotating L cyclically by one place to the left. Give
an inductive definition of rot and characterize the lists L such that rot(L) = L.

The Rotation Problem 80

Problem: Rotation
Instance: An array of A, a positive integer s.
Solution: Rotate A by s places.

Of course, the challenge is to do this with minimal resources.

How about linear time and O(1) extra space?

This is surprisingly difficult. Clearly, we can rotate by one place in linear time
and O(1) extra space. But we cannot repeat s = O(n) times without violating
the linearity constraint.

Alternatively, we can use scratch space O(s) to move the first s elements out
of the way, and move everything in linear time, but that violates the space
constraint.

The Reversal Trick 81

A clever and far from obvious trick is to use reversal to implement rotation.
The key observation is that

rot(u :: v, s) = rev(rev(u) :: rev(v))
where u has length s.

In other words, reverse the initial segment of A of length s, then reverse the
remainder, and in one last step reverse the whole array.

Since reversal can clearly be handled in linear time and O(1) extra space, done.

Code 82

// reverse block from lo to hi, inclusive
void reverse(int lo, int hi) {
int i,j, m = (hi-lo)/2;
for(i=lo, j=hi; i<m; i++,3——)
swap(i, j);

}

// rotate left, len length of array
void rotate_left(int s) {
s = s mod len;
reverse(0, s-1)
reverse(s, len-1);
reverse(0, len-1);

Exercise

What happens if we perform the reverse(0, len-1) operation first?

Structural Induction on Lists 83

Define a partial order on List(A) by taking the transitive closure of
L < prep(a, L).
Lemma

< is well-founded.

This is essentially induction on the length of the list: assume claim is true for
shorter lists.

Boils down to

@ Base case (empty list): show ¢(nil)

@ Induction step:
show ¢ (prep(a, L)) assuming o(L).

Alternatively, we can use “induction on the right”:

o show ¢(app(a, L)) assuming o(L).

Note, though, that in the usual singly-linked pointer implementation, recursion
on the left is more efficient.

Pairs 84

Forming all pairs (as, b;) from two given lists (a1,...,a,) and (b1,...,bn)
pair(nil, nil) = nil
pair(a :: L,b :: K) = (a,b) :: pair(L, K)
Recall that (a,b) is just short for prep(a, prep(b, nil)).

Note that this operation assumes input lists are of equal length. The output
type is a list of lists.

Exercise

Implement a class NList that provides arbitrarily nested lists of, say, integers,
together with a nice collection of operations.

The Rotation Problem 85 The Reversal Trick 86
Problem: Rotation
Instance: An array of A, a positive integer s. A clever and far from obvious trick is to use reversal to implement rotation.
Solution: Rotate A by s places. The key observation is that
Of course, the challenge is to do this with minimal resources. rot(u :: v, s) = rev(rev(u) :: rev(v))
. . -
How about linear time and O(1) extra space? where u has length s.
Th(;suOs iurpnsmgly d'ff";"lt' Clearly, we can rotateOby one place .mhlmear. tllm.e In other words, reverse the initial segment of A of length s, then reverse the
and () extra space. But we cannot repeat s = (n) times without violating remainder, and in one last step reverse the whole array.
the linearity constraint.
Since reversal can clearly be handled in linear time and O(1) extra space, done.
Alternatively, we can use scratch space O(s) to move the first s elements out
of the way, and move everything in linear time, but that violates the space
constraint.
Code 87 Borel Sets 88

// reverse block from lo to hi, inclusive
void reverse(int lo, int hi) {
int i,j, m = (hi-lo0)/2;
for(i=lo, j=hi; i<m; i++,3j——)
swap(i, j);

}

// rotate left, len length of array

void rotate_left(int s) {
s = s mod len;
reverse(0, s-1);
reverse(s, len-1);
reverse(0, len-1);

}

Exercise

What happens if we perform the reverse(0, len-1) operation first?

o Primitive elements are all open sets.

@ There are two constructors: complement and countable union.

So initially we have only open sets.

By complementation we obtain all closed sets.

Countable unions of closed sets are known in analysis as Fi, sets.
Countable intersections of open sets are G5, and so on and so forth.

One can show that this hierarchy is proper and extends all the way to the first
uncountable ordinal (there are as many Borel sets as there are reals).

One important property of Borel sets is that they are measurable; another is
that they obey the Continuum Hypothesis.

® Induction and Recursion

® Natural Numbers

® Induction Proofs

m Well-Orders

m Lists

© Trees

Total Recall: Trees 90

a is the root, ¢, d, h, 1,7, are leaves, everybody else (including the root) is an
interior node.

A branch is a root-to-leaf path such as a, e, f, g, 1.

The depth of the tree is the maximum length of any branch. The sample tree
has depth 4.

Implementing Trees 91 Destructors 92
Data structures for trees are very similar to lists.
For simplicity, consider binary trees over a groundset A. Atoms and
constructors are as follows: We can dismantle a non-empty tree like so:
@ The empty tree nil is in BTree(A). o cons(a, T, T") # nil.
e Fora € A and T1, T € BTree(A), cons(a,T1,T3) is in BTree(A). o cons(a, Ty, Ty) = cons(b, T}, T4) implies a = b and T; = T}.
So here nil stands for the empty tree, and cons(a, T1,T%) is the tree Thus we obtain an element in the groundset (the label of the root) plus two
trees, and these pieces are uniquely determined by the given tree.
Induction on Trees 93 Depth and Leaf-Count 94
Theorem (Induction for Trees) As an .example of an inductively defined operation, consider the depth function
for finite trees.
Suppose X C BTree(A), nil € X and for all T; € X, a € A we have)
cons(a,T1,T2) € X. Then X = BTree(A). d(nil) = -1
d(cons(a,Ti,T2)) = max(d(T1),d(T2)) + 1
The underlying well-founded partial order is the transitive closure of Note the depth of the empty tree.
Th,T> < cons(a, T1,T3)
And here is the number of nodes in the tree.
ne(nil) =0
. nc(cons(a, Th,12)) = ne(Th) + ne(T2) + 1
Exercise ((a,T1,T2)) (T1) (T2)
Explain what this has to do with induction on the depth of the tree.
Exercise Exercise
Generalize to other kinds of trees Find an inductive way to count the number of leaves in a tree.
Flattening a Tree 95 Binary Search Trees 96
Here is an operation that turns a tree into a linear list, inorder traversal. Definition

flat(nil) = nily
flat(cons(a, T1, T2) = join(flat(T1), (a), flat(71%2))

We have written nilz for the empty list to avoid confusion.

flattens out to (d,b,e,a,f,c,g)

A labeled binary tree T is a binary search tree (BST) if flat(T) is sorted.

We can search very efficiently in a BST:

search(nil,a) = ff
search(cons(a, T1,7%),a) = tt
search(cons(b, T1, T»), a) = search(T1, a) ifa<b
search(cons(b, 11, T%), a) = search(13, a) ifa>b
This algorithm only walks down one branch, so most nodes in the tree are
never touched.

Thus, the worst case cost of a search is the depth of the tree.

Binary Trees and Nested List 97 12t 98
Again we write nilz, for the empty list and nil for the empty tree.
12t(nilz) = nil
Binary trees are important since they are particularly easy to implement. 12t(a :: L) = cons(a, 12¢t(L))
Question: Which data structure is more expressive: Binary trees or nested 12t(K :: L) = cons(I12t(K),[2t(L))
ists?
lists? We have slightly adjusted the cons operation since only leaves are labeled.
We can convert nested lists (over some ground set A) into binary trees (with
leaves labeled in A), and back. Example
List (a, b, ¢, d) translates into the following binary tree.
12t : NList — BTree
t21 : BTree — NList (partial)
We want ¢
12t 0 t2] = Invist and t20 0 12t C IgTree
b
The map t21 is partial since not every tree corresponds to a nested list.
d nil
Nested List 99 21 100

Translating the nested list ((a,b), ¢, d, (€)).

Note the subtrees for (a,b) and (e).

Now in the opposite direction:

t21(nil) = nilg,
t2l(cons(a,T2)) = a :: t21(T3)
t2l(cons(T1,T2)) = t2U(T1) == t21(T%)

Exercise

Find a simple decision procedure for the domain of t2I.

Exercise

Prove that these functions are mutually inverse (in the sense specified a while
ago).

