
Constructive Logic (15-317), Fall 2012
Assignment Twelf: Bracket Abstraction Metatheory

Carlo Angiuli (cangiuli@cs)

Out: Thursday, November 29, 2012
Due: Friday, December 7, 2012 (5:00 pm)

With the full power of higher-order encodings in your toolbelt, you’re ready to
use Twelf for metatheory. In this extra credit assignment, you’ll prove correctness of
your encoding of bracket abstraction from Assignment 10. You should refer to your
filled-in bracket.elf and add your code to the newly-released bracket.thm.

There are no written portions of this assignment; just copy your completed
bracket.thm file to

/afs/andrew/course/15/317/submit/<userid>/hwTwelf

where <userid> is replaced with your Andrew ID. Your solutions should work in
the version of Twelf installed in the course directory.

1 Warmup: Worlds and Totality

One simple kind of correctness can be checked without doing metatheory proper:
the effectiveness of the translation. To do this, you’ll have to think carefully about
the worlds in which translation is total.

Extra Credit Task 1 (10 points). Add %mode, %worlds, and %total declarations to
bracket and translate.

2 Proof Development Tips

In the next section, you’ll prove a Twelf metatheorem. Along the way, you may
find yourself at a loss for what to do—here are some base guidelines to avoid that
situation.

• Do the proof (or a tricky case of the proof) on paper before attempting it in
Twelf. This will help you discover whether your confusion is due to the proof
itself or its Twelf encoding.
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• If you want to work on a part of the proof that uses a lemma before you
prove the lemma, use %trustme. To use it, type set unsafe true at the Twelf
top level, and write %trustme before any directive in your file. Remember to
set unsafe false and test your code a final time before you hand it in.

• Write type annotations on all inputs to a clause of the theorem, and on all
outputs of subgoals (i.e., inductive calls or lemma calls).

• Refer frequently to the output of type reconstruction. If you’re not sure how to
give a type annotation as suggested above, see how much you can get Twelf to
tell you first.

• Start by writing underscores (or conspicuous metavariables like XXX) in the
output positions of the case, do some work on the subgoal side (such as applying
induction), and see how close the outputs of your subgoals get you to the
reconstructed output type.

• If all else fails, return to the paper proof. Try naming the derivations on paper:
it will get you closer to Twelf notation.

3 Proving Dynamic Correctness

The simply-typed lambda calculus and the combinator calculus each have static and
dynamic semantics that define what the systems mean and how you compute with
them. What you are going to prove is that your definition of the translation from one
to the other is correct with respect to those semantics. In English, the theorem you’ll
prove is that if a lambda term e takes a step to e′, and if e translates to the combinator
term C, then e translates to some combinator term C′ to which C reduces.

The notion of reduces we need here is slightly different from the step relation we
defined on combinators before. It differs for one in that an application can reduce its
second argument, and for another in that it is closed under reflexivity and transitivity.
Its definition is provided.

creduce : comb -> comb -> type.

creduce/S : creduce (capp (capp (capp cS A) B) C)

(capp (capp A C) (capp B C)).

creduce/K : creduce (capp (capp cK A) B) A.

creduce/I : creduce (capp cI A) A.

creduce/app1 : creduce (capp A B) (capp A’ B)

<- creduce A A’.

creduce/app2 : creduce (capp A B) (capp A B’)

<- creduce B B’.

creduce/trans : creduce C C’’

<- creduce C C’
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<- creduce C’ C’’.

creduce/refl : creduce C C.

On paper, we’ll write creduce C C’ as C� C′.
The first thing we need to prove on the way to proving translation correct is a

lemma about bracket abstraction. We need to describe the sort of computational be-
havior we expect from bracket abstracted terms. Since they are, in essence, functions,
they should have a β-like behavior:

Lemma 1 (Combinator Substitution). If 〈x〉C1 = C1′, then for any combinator term
C2, C1′@C2� [C2/x]C1.

Extra Credit Task 2 (10 points). Prove the combinator substitution lemma in Twelf
by filling in clauses for the following declaration.

csubst : bracket ([x] C x) C* -> {C’:comb}

creduce (capp C* C’) (C C’) -> type.

%mode csubst +X1 +C’ -X2.

%% Fill in cases here

%worlds () (csubst _ _ _).

%total D (csubst D _ _).

Theorem 1 (Dynamic Correctness). If E 7→ E′ and tr(E) = C then tr(E′) = C′ and
C� C′.

Extra Credit Task 3 (10 points). Prove the dynamic correctness theorem in Twelf by
filling in clauses for the following declaration.

dyn-thm : step E E’ -> translate E C

-> translate E’ C’

-> creduce C C’ -> type.

%mode dyn-thm +X1 +X2 -X3 -X4.

%% Fill in cases here

%worlds () (dyn-thm _ _ _ _).

%total D (dyn-thm D _ _ _).

4 Proving Static Correctness

Static correctness, the idea that translation preserves types, is notionally a simpler
theorem, but it requires more subtle Twelf machinery. Therefore, this problem is extra
extra credit—only do it if you’re having fun and want to learn more.

The statement of the theorem is as follows:
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stat-thm : translate E C -> of E T -> cof C T -> type.

%mode stat-thm +X1 +X2 -X3.

%block tbind : some {T:tp}

block {x:term} {dx:of x T}

{cx:comb} {dcx:cof cx T}

{dtrans:translate x cx}

{dthm : stat-thm dtrans dx dcx}.

%worlds (tbind) (stat-thm _ _ _).

%total D (stat-thm _ D _).

You’ll need to prove a corresponding lemma about bracket abstraction:

brack-stat-thm : ({x} cof x T -> cof (C x) T’) -> bracket ([x] C x) C*

-> cof C* (arrow T T’) -> type.

%mode brack-stat-thm +X1 +X2 -X3.

%worlds (tbind) (brack-stat-thm _ _ _).

%total D (brack-stat-thm _ D _).

Extra Credit Task 4 (10 points). Prove the static correctness of bracket abstraction
lemma in Twelf by filling in clauses for brack-stat-thm.

And finally, you’ll need a way to prove that if you have a derivation about a
combinator term that doesn’t have a free variable, the derivation itself lacks the
variable. This proof is provided.

cof-strengthen : ({x} {d:cof x T} cof C T’)

-> cof C T’ -> type.

%mode cof-strengthen +X1 -X2.

-D : cof-strengthen ([x] [d] D) D.

-app : cof-strengthen ([x] [d] cof/app (Dof2 x d) (Dof1 x d))

(cof/app Dof2* Dof1*)

<- cof-strengthen Dof2 Dof2*

<- cof-strengthen Dof1 Dof1*.

%worlds (tbind) (cof-strengthen _ _).

%total D (cof-strengthen D _).

Extra Credit Task 5 (10 points). Prove the static correctness theorem in Twelf by
filling in clauses for stat-thm.
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