
Constructive Logic (15-317), Fall 2012
Assignment 7: Logic Programming in Prolog

Carlo Angiuli (cangiuli@cs)

Out: Friday, October 26, 2012
Due: Thursday, November 1, 2012 (before class)

The purpose of this assignment is to familiarize you with logic programming as
a computational interpretation for proof search. You will see how you can use the
power of built-in backtracking and unification to concisely implement some familiar
algorithms.

Your solutions must include Prolog code for split, merge, mergesort, and infer,
as well as any auxiliary predicates you defined. Your work should be submitted via
AFS by copying your code to the directory

/afs/andrew/course/15/317/submit/<userid>/hw07

where <userid> is replaced with your Andrew ID.

1 Running Prolog

To run Prolog, execute

/afs/andrew/course/15/317/bin/runprolog

from any Andrew machine. Alternatively, you may download and install a copy
locally from http://www.gprolog.org/, but please test your code a final time on an
Andrew machine to ensure it works there, as that is what we will use to grade.

You can load a file foo.pl at the Prolog prompt by typing

?- [foo].

Issue queries by typing predicates at the prompt as you have seen in class; if Prolog
offers more solutions, you can see them by typing ; and ignore them by pressing
enter.

1



2 Mergesort (15 points)

Let L1@L2 indicate the concatenation of the lists L1 and L2.

Task 1 (3 pts). Implement a predicate split(L,L1,L2)which holds exactly when L1
and L2 evenly partition the list L, that is, when L1@L2 is a permutation of L, and L1
and L2 differ in length by at most one.

Task 2 (3 pts). Implement a predicate merge(L1,L2,L) for sorted lists of integers L1,
L2, and L, which holds exactly when L is a sorted permutation of L1@L2.

Task 3 (9 pts). Implement a predicate mergesort(L1,L2) operating over two lists
of integers. Your predicate should use the aforementioned primitives to implement
mergesort; mergesort(L1,L2) should hold exactly when L2 is a sorted permutation
of L1.

3 Type inference (25 points)

We can implement symbolic algorithms such as type checking and evaluation in
Prolog almost as easily as we can specify them on paper. Consider the proof term
assignment for natural deduction that we have been using all semester. In Prolog,
we could specify the syntax of terms as follows:

term(?x). % where x is a Prolog atom

term(unit).

term(lam(?x,M))

:- term(M).

term(app(M,N))

:- term(M), term(N).

term(pair(M,N))

:- term(M), term(N).

term(fst(M))

:- term(M).

term(snd(M))

:- term(M).

term(inl(M))

:- term(M).

term(inr(M))

:- term(M).

term(case(M,?x,N,?y,P))

:- term(M), term(N), term(P).

Here, we use ?x to represent a variable x, lam(?x.M) to represent the term λx.M, and
case(M,?x,N,?y,P) to represent case(M, x.N, y.P). We represent conjunction by /\,
disjunction by \/, implication by =>, and truth by top.

2



% Infix notation

:- op(840, xfy, =>). % implies, right assoc

:- op(830, xfy, \/). % or, right assoc

:- op(820, xfy, /\). % and, right assoc

:- op(800, fy, :). % has-type, prefix

:- op(800, fy, ?). % variable, prefix

Figure 1: Prolog starter code for infer.

When we looked at proof terms in class, we annotated lambdas by the type of
the bound variable; in practice, we can actually infer possible types for the variable
by looking at the rest of the term. The term λx.(π1 x) is encoded lam(?x, fst(?x)).
It must be assigned a type which unifies with (A /\ B) => A; that is, it could have
type (A /\ B) => A, but it would also validly typecheck as (tt /\ tt) => tt.

Task 4 (20 pts). Implement a predicate infer(G, M, A) that holds whenever term
M has type A under context G. (Hint: Make sure your implementation is robust with
respect to alpha-renaming!)

The file infer.pl contains some infix operator declarations relevant to the as-
signment (see Figure 1).

Task 5 (5 pts). Given a term M with no free variables, how may we invoke infer
to infer the type of M? Use this to infer the type of λx.x x, and explain the behavior
you see in terms of what happens in Prolog’s proof search. (Put your answers in a
comment.)

3


	Running Prolog
	Mergesort (15 points)
	Type inference (25 points)

