
Constructive Logic (15-317), Fall 2012
Assignment 6: Sequent Calculus for Proof Search

Carlo Angiuli (cangiuli@cs)

Out: Thursday, October 18, 2012
Due: Thursday, October 25, 2012 (before class)

In this assignment, you will use the contraction-free, or G4ip, sequent calculus to
build a simple yet realistic theorem prover for propositional constructive logic. By
the end of the assignment, you will have implemented a sound and complete proof
search procedure capable of proving automatically any of the propositional theorems
you’ve proven manually this semester using Tutch.

Your submission must include:

• A README file including your answer to Task 1, and a brief description of your
solution to Task 2.

• Your implementation of the G4ip structure, as a solution to Task 2.

Your work should be submitted via AFS by copying your code to the directory

/afs/andrew/course/15/317/submit/<userid>/hw06

where <userid> is replaced with your Andrew ID.

1

1 Automated Theorem Proving (40 points)

Because G4ip’s rules all reduce the “weight” of the formulas making up the sequent
when read bottom-up, it is straightforward to see that it represents a decision proce-
dure. The rules themselves are non-deterministic, though, so one must invest some
effort in extracting a deterministic implementation from them.

Task 1 (5 pts). Explain briefly why the G4ip calculus is more suitable for automated
theorem proving than the original sequent calculus we presented in class. In partic-
ular, what do we gain from:

• distinguishing between invertible and non-invertible rules, and

• splitting the ⊃ L rule into a specialized set of rules?

Task 2 (35 pts). Implement a proof search procedure based on the G4ip calculus. Ef-
ficiency should not be a primary concern, but see the hints below regarding invertible
rules. Strive instead for correctness and elegance, in that order.

In README, you must also briefly describe your implementation strategy.

We recommend writing your implementation in Standard ML. If you would like
to use a different language, you must clear your choice with Carlo before submission.

Some starter SML code is provided in the file prop.sml to clarify the setup of
the problem and give you some basic tools for debugging (see Figure 1). Implement
a structure G4ip matching the signature G4IP. A simple test harness assuming this
structure is given in the structure Test in the file test.sml.

Here are some hints to help guide your implementation:

• Be sure to apply all invertible rules before you apply any non-invertible rules.
Recall that the only non-invertible rules in G4ip are∨R1,∨R2, and⊃⊃L, but that
P⊃L and the init rule cannot always be applied asynchronously. One simple
way to ensure that you do inversions first is to maintain a second context of
non-invertible propositions and to process it only when the invertible context
is exhausted.

• When it comes time to perform non-invertible search, you’ll have to consider
all possible choices you might make. Many theorems require you to use your
non-invertible hypotheses in a particular order, and unless you try all possible
orders, you may miss a proof.

• The provided test cases can help you catch many easy-to-make errors. Test
your code early and often!

There are many subtleties and design decisions involved in this task, so don’t leave
it until the last minute!

2

signature PROP =

sig

datatype prop = (* A ::= *)

Atom of string (* P *)

| True (* | T *)

| And of prop * prop (* | A1 & A2 *)

| False (* | F *)

| Or of prop * prop (* | A1 | A2 *)

| Implies of prop * prop (* | A1 => A2 *)

val Not : prop -> prop (* ˜A := A => F *)

val toString : prop -> string

end

structure Prop :> PROP = ...

signature G4IP =

sig

(* [decide A = true] iff . ===> A has a proof,

[decide A = false] iff . ===> A has no proof *)

val decide : Prop.prop -> bool

end

Figure 1: SML starter code for G4ip theorem prover.

3

A Complete G4ip Rules

Init Rule

Γ,P −→ P
init

Ordinary Rules

Γ −→ >
>R

Γ −→ C
Γ,> −→ C

>L

Γ −→ A Γ −→ B
Γ −→ A ∧ B

∧R
Γ,A,B −→ C

Γ,A ∧ B −→ C
∧L

(no ⊥R rule) Γ,⊥ −→ C
⊥L

Γ −→ A
Γ −→ A ∨ B

∨R1
Γ −→ B
Γ −→ A ∨ B

∨R2
Γ,A −→ C Γ,B −→ C

Γ,A ∨ B −→ C
∨L

Γ,A −→ B

Γ −→ A ⊃ B
⊃R

Compound Left Rules

Γ,P,B −→ C

Γ,P,P ⊃ B −→ C
P⊃L

Γ,B −→ C

Γ,> ⊃ B −→ C
>⊃L

Γ,D ⊃ E ⊃ B −→ C

Γ, (D ∧ E) ⊃ B −→ C
∧⊃L

Γ −→ C
Γ,⊥ ⊃ B −→ C

⊥⊃L
Γ,D ⊃ B,E ⊃ B −→ C

Γ, (D ∨ E) ⊃ B −→ C
∨⊃L

Γ,D,E ⊃ B −→ E Γ,B −→ C

Γ, (D ⊃ E) ⊃ B −→ C
⊃⊃L

4

	Automated Theorem Proving (40 points)
	Complete G4ip Rules

