
Constructive Logic (15-317), Fall 2014
Assignment 7: Logic Programming in Prolog

Joe Tassarotti (jtassaro@andrew), Evan Cavallo (ecavallo@andrew)

Out: Thursday, October 23, 2014
Due: October 30, 2014 (before class)

The purpose of this assignment is to familiarize you with logic programming
as a computational interpretation for proof search. you will see how you can use
the power of built-in backtracking and unification to concisely implement some
familiar algorithms.

Your solutions must include Prolog code for split, merge, mergesort, and
infer, as well as any auxiliary predicates you defined. Your work should be
submitted via AFS by copying your code to the directory

/afs/andrew/course/15/317/submit/<your andrew id>/hw07

where <userid> is replaced with your Andrew ID.

1 Running Prolog

To run Prolog, execute

/afs/andrew/course/15/317/bin/runprolog

from any Andrew machine. Alternatively, you may download and install a copy
locally from http://www.gprolog.org/, but please test your code a final time
on an Andrew machine to ensure it works there, as that is what we will use to
grade.

You can load a file foo.pl at the Prolog prompt by typing

?- [foo].

Issue queries by typing predicates at the prompt as you have seen in class; if
Prolog offers more solutions, you can see them by typing ; and ignore them by
pressing enter.

1

2 Mergesort (15 points)

Let L1@L2 indicate the concatenation of the lists L1 and L2.

Task 1 (3 pts). Implement a predicate split(L,L1,L2)which holds exactly when
L1 and L2 evenly partition the list L, that is, when L1@L2 is a permutation of L, and
L1 and L2 differ in length by at most one.

Task 2 (3 pts). Implement a predicate merge(L1,L2,L) for sorted lists of integers
L1, L2, and L, which holds exactly when L is a sorted permutation of L1@L2.

Task 3 (9 pts). Implement a predicate mergesort(L1,L2) operating over two
lists of integers. Your predicate should use the aforementioned primitives to
implement mergesort; mergesort(L1,L2) should hold exactly when L2 is a
sorted permutation of L1.

3 Cut (8 points)

Recall that we say a cut ! in Prolog is green if its presence does not affect the
program’s meaning; in other words, if adding it does not prevent any new
solutions from being found. A cut is red if it is not green.

Task 4 (4 pts). Consider the following definition of the predicatedelete(Xs,X,Ys),
which holds exactly when Ys is the result of deleting all occurrences of X in Xs.

delete([X|Xs],X,Ys) :- !, delete(Xs,X,Ys).

delete([X|Xs],Z,[X|Ys]) :- !, delete(Xs,Z,Ys).

delete([],X,[]).

For each cut appearing in delete, explain whether it is a green or red cut. (Put
your answers in a comment.)

Task 5 (4 pts). Implement a predicate remove(Xs,X,Ys) which holds exactly
when Ys is the result of deleting the first occurrence of X in Xs (if Xs does not
contain X, then remove(Xs,X,Ys) should not hold). Wherever you use !, note in
a comment whether the cut is green or red.

4 Type inference (25 points)

We can implement symbolic algorithms such as type checking and evaluation
in Prolog almost as easily as we can specify them on paper. Consider the proof
term assignment for natural deduction that we have been using all semester. In
Prolog, we could specify the syntax of terms as follows:

2

% Infix notation

:- op(840, xfy, =>). % implies, right assoc

:- op(830, xfy, \/). % or, right assoc

:- op(820, xfy, /\). % and, right assoc

:- op(800, fy, :). % has-type, prefix

:- op(800, fy, ?). % variable, prefix

Figure 1: Prolog starter code for type inference.

term(?X).

term(unit).

term(lam(?X,M))

:- term(M).

term(app(M,N))

:- term(M), term(N).

term(pair(M,N))

:- term(M), term(N).

term(fst(M))

:- term(M).

term(snd(M))

:- term(M).

term(inl(M))

:- term(M).

term(inr(M))

:- term(M).

term(case(M,?X,N,?Y,P))

:- term(M), term(N), term(P).

Here we use ?x to represent a variable x, lam(?x.M) to represent the term λx.M,
and case(M,?x,N,?y,P) to represent case(M, x.N, y.P). We represent conjunction
by /\, disjunction by \/, implication by =>, and truth by top.

When we looked at proof terms in class, we annotated lambdas by the
type of the bound variable; in practice, we can actually infer possible types
for the variable by looking at the rest of the term. The term λx. (π1 x) is
encoded lam(?x, fst(?x)). It must be assigned a type which unifies with
(A /\ B) => A; that is, it could have type (A /\ B) => A, but it would also
validly typecheck as (tt /\ tt) => tt.

Task 6 (20 pts). Implement a predicate infer(G, M, A) that holds whenever
term M has type A under context G. (Hint: Make sure your implementation is
robust with respect to alpha-renmaing!)

3

The file infer.pl contains some infix operator declarations relevant to the
assignment (see Figure 1).

Task 7 (5 pts). Given a term Mwith no free variables, how may we invoke infer
to infer the type of M? Use this to infer the type ofλx. x x, and explain the behavior
you see in terms of what happens in Prolog’s proof search. (Put your answers
in a comment.)

4

	Running Prolog
	Mergesort (15 points)
	Cut (8 points)
	Type inference (25 points)

