Constructive Logic (15-317), Fall 2012 Assignment 3: Quantifiers and Metatheorems

Joe Tassarotti (jtassaro@andrew), Evan Cavallo (ecavallo@andrew)

Out: Thursday, September 18, 2012 Due: Thursday, September 25, 2012 (before class)

In this assignment, you will prove propositions with quantifiers (\forall and \exists), and prove metatheorems about sequent calculus.

The Tutch portion of your work (Section 1) should be submitted electronically using the command

```
$ /afs/andrew/course/15/317/bin/submit -r hw03 <files...>
```

from any Andrew server. You may check the status of your submission by running the command

```
$ /afs/andrew/course/15/317/bin/status hw03
```

If you have trouble running either of these commands, email Joe or Evan.

The written portion of your work (Sections 2 and 3) should be submitted electronically before the beginning of class. Please convert your homework to a PDF file titled hw03.pdf, and put the file in:

/afs/andrew/course/15/317/submit/<your andrew id>

If you are familiar with LATEX, you are encouraged to use this document as a template for typesetting your solutions, but you may alternatively write your solutions *neatly* by hand and scan them.

1 Tutch Proofs (15 points)

For quantifiers, you'll need a little bit of new syntax:

- $\forall x : \tau . A$ is written !x:t.A
- $\exists x : \tau . A$ is written ?x:t.A

• The existential elimination rule requires a hypothetical with two assumptions. These are written by separating the assumptions with a comma. For example:

```
proof exp : (?x:t.A(x)) => ?x:t.A(x) =
begin
[(?x:t.A(x));
[a:t , A(a);
    ?x:t.A(x)];
?x:t.A(x)];
(?x:t.A(x)) => ?x:t.A(x);
end;
```

Task 1 (15 points). Prove the following theorems using Tutch.

```
proof instance : (!x:t.P(x)) => (?y:t.T) => (?z:t.P(z))
proof dm : (!x:t.~P(x)) => ~(?x:t.P(x));
proof eximp : (?x:t. P(x) => Q(x)) => (!x:t.P(x)) => (?x:t.Q(x))
proof allor : ((!x:t. P(x)) | (!x:t. Q(x))) => !x:t. P(x) | Q(x)
proof spread : (?x:t.P(x)) => (!x:t.!y:t.P(x) => P(y)) => !x:t.P(x)
```

On Andrew machines, you can check your progress against the requirements file /afs/andrew/course/15/317/req/hw03.req by running the command

```
$ /afs/andrew/course/15/317/bin/tutch -r hw03 <files...>
```

2 Impossible! (10 points)

We have seen that it is much easier to demonstrate unprovability (and related results) in sequent calculus than natural deduction.

Task 2 (5 points). Assuming *A* is an atomic proposition, show that there is *no* proof of:

 $\cdot \Longrightarrow \neg (A \lor \neg A)$

Task 3 (5 points). Assuming *A* and *B* are (distinct) atomic propositions, show there is *no* proof of:

$$\cdot \Longrightarrow ((A \supset B) \supset A) \supset A$$

3 The Case of the Missing Cases (12 points)

We claimed in lecture that any derivation in sequent calculus can be transformed into a verification; that is,

Theorem. If $\Gamma \Longrightarrow C$, then $\Gamma \downarrow \vdash C \uparrow$.

where for $\Gamma = A_1, ..., A_n$ we define $\Gamma \downarrow = A_1 \downarrow, ..., A_n \downarrow$. We proved this by induction on the derivation \mathcal{D} of $\Gamma \Longrightarrow C$. Prove the following cases we skipped in lecture:

Task 4 (3 points). The last rule applied in \mathcal{D} is $\supset R$.

Task 5 (3 points). The last rule applied in \mathcal{D} is $\supset L$.

In lecture, we proved

Theorem (Cut Elimination). If $\Gamma \Longrightarrow C$ and $\Gamma, C \Longrightarrow H$, then $\Gamma \Longrightarrow H$.

by lexicographic induction first on *C*, then on the derivation \mathcal{D} of $\Gamma \Longrightarrow C$, and then on the derivation \mathcal{E} of $\Gamma, C \Longrightarrow H$. Give proofs of the following cases which we skipped in lecture:

Task 6 (3 points). The last rule applied in \mathcal{E} is $\lor R_1$.

Task 7 (3 points). The last rule applied in \mathcal{E} is $\forall L$ and the principal formula in that application is not *C*.