
Midterm II

15-317: Constructive Logic

November 6, 2014

Name: Andrew ID:

Instructions

• This exam is closed book and closed Internet. A two-sided sheet of handwritten notes is
permitted.

• There are three problems. Not all problems are the same size or difficulty, so it may help to
read through the whole exam first. You have ninety minutes to complete the exam.

• You may find it helpful to construct your proofs on scratch paper (such as the back of a page)
before writing it clearly in the space provided.

• Good luck!

Problem 1 Problem 2 Problem 3 Total

Score

Max 30 40 30 100

1 Invertibility

Problem 1: Below are three rules governing a connective ♠(A,B,C) in natural deduction. Which
of the rules are invertible, and which are non-invertible? Explain.

A true....
B true

A true....
C true

♠(A,B,C) true
♠I

♠(A,B,C) true A true

B true
♠E1

♠(A,B,C) true A true

C true
♠E2

The rule ♠I is invertible, because ♠E1 and ♠E2 can be used to recover its premises from its
conclusion.

The rules♠E1 and♠E2 are not invertible, because B or C can certainly be true without♠(A,B,C)
and A being true. For example, we could have A = F and B = T .

2

Problem 2: Below are three rules governing a connective ♣(A,B,C) in sequent calculus. Which
of the rules are invertible, and which are non-invertible? Explain. (You may assume that cut
admissibility and identity expansion hold.)

∆ −→ A ∆ −→ B
∆ −→ ♣(A,B,C)

♣R1
∆ −→ A ∆ −→ C
∆ −→ ♣(A,B,C)

♣R2

∆, A,B −→ D ∆, A,C −→ D

∆,♣(A,B,C) −→ D
♣L

The rule ♣L is invertible, because ♣R1 and ♣R2 together with cut admissibility and identity
expansion can be used to recover its premises. For the first premise, we can show ∆, A,B −→ A
and ∆, A,B −→ B by identity expansion, so ∆, A,B −→ ♣(A,B,C) by ♣R1, so ∆, A,B −→ D by
cut admissibility.

The rules ♣R1 and ♣R2 are not invertible, because ∆ −→ ♣(A,B,C) can be derivable without
∆ −→ B and ∆ −→ C being derivable. For example, we could have A = C = T and B = F .

3

Problem 3: Explain the role that invertibility plays in automated theorem proving. Use complete
sentences.

We can use invertibility to reduce the size of the search space in automated theorem proving.
Applying an invertible rule never changes the provability of the outstanding goals, so an invertible
rule can be applied eagerly without needing to record a backtracking point.

4

2 Logic Programming

Suppose we are given a collection of rules of the form edge(from, to, cost) that define a directed
acyclic graph with weighted edges. All costs are greater than zero. For example:

edge(a, b, 1).
edge(a, c, 1).
edge(b, d, 2).
edge(c, d, 2).

defines a graph with four nodes, in which one can move from a to b or c at a cost of 1, and from
b or c to d at a cost of 2.

Problem 1: In Prolog, implement a predicate path(V,W,N) that holds when there exists a path
(consisting of at least one edge) from V to W with a total cost of exactly N . Use Prolog’s built-in
arithmetic for cost arithmetic. Do not use cut.

path(V, W, N)
:-
edge(V, W, N).

path(V, W, N)
:-
edge(V, X, M),
path(X, W, P),
N is M+P.

5

Problem 2: Suppose the graph may contain cycles, all costs remain greater than zero, and path
is always called with a ground integer as its third argument. Re-implement path so that it never
enters an infinite loop. Use Prolog’s built-in arithmetic for cost arithmetic. Do not use cut.

path(V, W, N)
:-
edge(V, W, N).

path(V, W, N)
:-
N > 0,
edge(V, X, M),
P is N-M,
path(X, W, P).

6

3 Twelf

Below is Twelf code for natural numbers and addition, with mode, termination, and coverage
checking.

nat : type.
z : nat.
s : nat -> nat.

plus : nat -> nat -> nat -> type.
%mode plus +M +N -P.

plus/z : plus z N N.

plus/s : plus (s M) N (s P)
<- plus M N P.

%worlds () (plus _ _ _).
%total M (plus M _ _).

Problem 1: Below is Twelf code for multiplication. Either mode checking, termination checking,
or coverage checking fails. Explain which one fails, and why. Then correct the program. Do not
change the mode declaration.

mult : nat -> nat -> nat -> type.
%mode mult +M +N -P.

mult/z : mult z N z.

mult/s : mult (s M) N Q
<- mult M N P
<- plus P N Q.

%worlds () (mult _ _ _).
%total N (mult _ N _).

Termination checking fails because the indicated induction argument (the second argument) does
not decrease in recursive calls. The final line should be replaced by:

%total N (mult N _ _).

7

Problem 2: Below is Twelf code for exponentiation. Either mode checking, termination checking,
or coverage checking fails. Explain which one fails, and why. Then correct the program. Do not
change the mode declaration. You may assume that the implementation of mult is correct.

exp : nat -> nat -> nat -> type.
%mode exp +M +N -P.

exp/z : exp N z (s z).

exp/s : exp M (s N) Q
<- mult P M Q
<- exp M N P.

%worlds () (exp _ _ _).
%total N (exp _ N _).

Mode checking fails because P is not ground in the call to mult. The order of the two subgoals in
exp/s should be reversed.

8

Problem 3: Below is Twelf code for factorial. Either mode checking, termination checking, or
coverage checking fails. Explain which one fails, and why. Then correct the program. Do not
change the mode declaration. You may assume that the implementation of mult is correct.

fact : nat -> nat -> type.
%mode fact +M -N.

fact/1 : fact (s z) (s z).

fact/s : fact (s N) Q
<- fact N P
<- mult (s N) P Q.

%worlds () (fact _ _).
%total N (fact N _).

Coverage checking fails because the case where the input is z is not covered. The first rule should
be replaced by:

fact/z : fact z (s z).

9

