
Recitation 9:
Control Flow and Exceptions
15-312: Foundations of Programming Languages

Charles Yuan, Jeanne Luning Prak

March 21, 2018

1 Control Flow

So far in this course, we have been using structural dynamics to study the evaluation of terms
in a language. After an expression is deemed well-formed by the statics, the transition rules in
a dynamics system tell us what happens at every step of evaluation, and the valuation rules tell
us when evaluation ceases.

We’ve been able to encode some notion of control flow into this system: if-then-else clauses,
function calls and recursive functions, as well as laziness in evaluation. But all of these are local
forms of control, solely determined by the two sides of the 7−→ judgment. Advanced languages
have sophisticated methods of nonlocal control flow, among which are the ideas of exceptional
control flow, continuations, nonlocal jumps (setjmp, longjmp), etc. Such constructs must be
modeled with a more sophisticated consideration of control.

The first half of this course largely focuses on logical fundamentals, safety, semantics, and
expressiveness of the languages we develop. In the second half, we begin to examine interesting
characteristics of languages like scope, mutable assignables, and call stacks. Control stacks in
particular allow us to model nonlocal control, and the logical system that corresponds with our
understanding of call stacks is called a K machine.

1.1 K Machines

A K machine is an abstract machine that lets us model computation. (A Turing machine is
also an abstract machine of sorts.) It’s not a language with syntax like we have studied so far,
but has the same computational capacity as PCF.

A K machine possesses an expression language, the same as PCF. We also introduce the notion
of stack frames f , which are defined inductively and look like this:

s(−)

ifz e0 {z ↪→ x | s(e1) ↪→ −}

e1(−)

Intuitively, we use a placeholder − for one spot within the expression where we would normally
expect a subexpression. When the frame is placed on the call stack, we mean that the stack is
now trying to compute a value that should be placed at the −.

1

1.1 K Machines 1 CONTROL FLOW

After we define the stack frames f , we can define the stacks k:

k ::= ε | k; f

As you can see, stacks themselves are just lists of stack frames. ε is the empty stack.

The semantics of K machines are defined by the following judgments:

k . e means that we are evaluating e on the stack k, and
k / v means that we are returning the value v from the stack k.

There is also a transition judgment 7−→, which relates the previous two judgments. We use the
transitions to model PCF steps, so we want the following rules:

k . z 7−→ k / z

This rule says “To evaluate zero on a stack, we just return it.” Note that this is true since zero
is a value in PCF.

k . s(e) 7−→ k; s(−) . e

This rule says “To evaluate the successor of e, we add a stack frame for the successor and evaluate
e”. Eventually e becomes fully evaluated, and we have

k; s(−) / e 7−→ k / s(e)

which says “Once e is a value, if it was waited on by a successor, we return the successor of e”.
Note the direction of the arrows; a right arrow always means “evaluate more”, and a left arrow
always means “return a value”. We always keep k around as the remaining stack. It’s sort of like
a context for the dynamics, full of the computations that are waiting on this evaluation.

There are more of these rules, one for each transition in PCF, and they are given in the
textbook.

A valid K machine is an explicit representation of the control flow of a PCF program. As an
exercise, try to evaluate (λ (x : nat) s(x))(s(z)) on a K machine. You need only to write out all
the states that take

ε . (λ (x : nat) s(x))(s(z))

to
ε / s(s(z)).

1.1.1 Safety

K machines have a notion of correctness which should be shown to make the system fully logically
sound and complete. While we won’t focus on it, the crux is to define and prove the property
that K machines are well-formed in that they accept values of certain type, then transform
them into values of some other type. Once we have this, we may prove that K machines yield
exactly the same behavior as PCF structural dynamics. The treatment is fully fleshed-out in
the textbook.

2
.

2 EXCEPTIONS

2 Exceptions

So far, we have devised an alternative scheme to PCF structural dynamics which is guaranteed
to give the same results as the original system. That’s not very interesting, but now we can
extend K machines to do what PCF could not: handle exceptions with nonlocal handlers. This
will be the first example of how the stack machine extends our understanding of evaluation, and
we will soon see more.

2.1 Exceptions vs. Errors

Our treatment of exceptions is modeled off the behavior of exceptions in ML. Exceptions are one
of the frequently controversial aspects of high-level programming languages, and much debate
occurs over whether they should be used,1 what information they should carry, how they should
be checked statically,2 the importance of optimizing exceptional control flow,3 and even whether
they’re necessary at all!4

In a functional setting, exceptional control flow circumvents the type system. If a type is a
theorem and a function is an implication according to Curry-Howard, then the presence of
exceptions undermines the notion of proof since raise can be used to prove any claim. It also
makes evaluation “dangerous” in that well-typed expressions may now not only evaluate to a
value, or diverge, but also now raise an exception. Why, then, do we still use exceptions?

It turns out that ML’s exception features are highly nuanced largely thanks to the exn type.5

Exceptions in ML serve many more purposes than meets the eye:

• To indicate that an error has occurred. A generic “failure” would also suffice to show this,
as we saw with dynamically checked languages, or perhaps a sum (option) type.

• To deliberately invoke nonlocal control flow, such as in a backtracking algorithm. This
pattern is much more common in ML than in e.g. Java. Regular control flow could of
course be written to achieve the same effect, but might be convoluted by comparison.
Continuations, which we will see soon, also serve this purpose.

• To share data with the handler of the exception according to a set of programmer- defined
tags.

The last point distinguishes ML-style exceptions from other languages, and merits some more
discussion. For now we will appeal to our understanding of the exn type from ML to see how
an exception is able to transmit a packet of data to a handler, who can only unwrap the data
if they understand the exception. This is a rudimentary form of secrecy in data transmission!
Consider the following snippet:

structure Alice :> sig
exception Message of string
val tell : string -> unit

end =
struct

exception Message of string

1The Google C++ style guide prohibits using C++ exceptions altogether! Seems like a bit of a waste...
2Some believe Java’s notorious checked exceptions to be a mistake.
3See benchmarks. One “pro” is that explicit checks are not necessary at every stack frame. One “con” is that
stack unwinding is slow.

4Like all things, exceptions are monadic and therefore perfectly expressible within the Haskell type system...
5Largely known as “exception” or “extensible” depending on who you ask.

3
.

https://google.github.io/styleguide/cppguide.html
http://literatejava.com/exceptions/checked-exceptions-javas-biggest-mistake/
https://shipilev.net/blog/2014/exceptional-performance/
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Except.html

2.2 Defining Exceptions 2 EXCEPTIONS

fun tell s = raise Message "secret"
end

Now we may communicate with Alice by sending using tell and receiving by handling Alice.Message:

fun tell_and_listen s = (Alice.tell s; NONE) handle Alice.Message s => SOME s
val SOME "secret" = tell_and_listen "hi"

Now consider sealing the exception away:

signature SHH = sig
val tell : string -> unit

end
structure SecretAlice = Alice :> SHH

Now we can still send messages with tell, but there is no way to receive a message, because the
exception is completely opaque to the sender. A handler could try to catch the exception, but has
no way to unwrap the internals since there is no exception Message visible to the outside. Only
someone who had access to the exception Message could read Alice’s message, in a typesafe
system!

We will discuss exn in much more detail when we discuss dynamic classification later in the
course. For now, this is a taste of how interesting ML exceptions really are, with a control
component that is already more ergonomic than other languages, and a data component that is
innovative. Despite some drawbacks, using exceptions judiciously enables concise and nuanced
code. Few other inventions could suffice to serve all the purposes of exceptions.

2.2 Defining Exceptions

Now that we have motivated exceptions, we can define the syntax and semantics for exceptions.
To add exceptions to a language (in our case, we will be adding them to PCF), we add two new
operators:

e ::= ...

raise(e)

try(e1;x.e2)

The try(e1;x.e2) creates an exception handler, which either steps to e1 if no exception is raised,
or it binds the exception value to x and evaluates e2 if an exception is raised. The raise(e)
raises an exception with value e.

The statics for try and raise are given below:

Γ ` e : τexn
Γ ` raise(e) : τ

Γ ` e1 : τ Γ, x : τexn ` e2 : τ

Γ ` try(e1;x.e2) : τ

Note that we have not yet defined the τexn type: the type of exception values. There are many
types that we could choose to be τexn, including:

• Strings, to contain error messages.

• Ints, to contain error codes.

• A sum of many different types, to represent a variety of possible errors.

4
.

2.2 Defining Exceptions 2 EXCEPTIONS

However, all of these have the shortcoming that they constrain us to storing one particular type
(or a fixed number of types) of information in an exception. However, there are many different
conditions under which we might want to raise an exception, and in each of them, we might
want to associate a different type of data with the exception. We will see a way of dealing with
this problem later in the class, so for now we won’t define exactly what τexn is.

To define the dynamics, we add a third judgment to the K machine semantics:

k J e means that we are passing the exception value e to stack k

We then add judgments for try and raise:

k . raise(e) 7−→ k; raise(−) . e

k; raise(e) / e 7−→ k J e

k . try(e1;x.e2) 7−→ k; try(−;x.e2) . e1

k; try(−;x.e2) / e 7−→ k / e

k; try(−;x.e2) J e 7−→ k . [e/x]e2

(f 6= try(−;x.e2))

k; f J e 7−→ k J e

The last rule states that a raised exception is propagated up the stack, until it reaches a handler
or an empty stack. In the second to last and last rules, whether we see a J or / judgment allows
us to determine whether to go into the e1 or the e2 of the try.

5
.

