
Recitation 8:
Dynamic and Unityped Languages

15-312: Foundations of Programming Languages

Jeanne Luning Prak, Charles Yuan

March 7, 2018

1 Untyped Languages

In this recitation, we explore two languages: the so-called untyped lambda calculus (Λ) and
Dynamic PCF (DPCF). Such languages are often referred to as “untyped” or “dynamically
typed” languages. However, we shall see that both of these languages actually have one single
type, and every well-formed expression has that type. For this reason, we say that untyped
actually means unityped, and that dynamic languages.1 are a special case of static languages2

Λ is simple enough that having only a single type is unproblematic, but DPCF must incur a
major runtime overhead to check that various operations are valid and raise errors if they are
not.3

2 The “Untyped” Lambda Calculus

Λ only has three possible expressions:

x variable
λ (x) e abstraction
e1(e2) application

We will often use the simpler notation λx.e to represent a lambda term, in accordance with most
literature.

Its statics have only one judgment: Γ ` e ok, which determines that an expression contains no
free variables.

However, despite its simplicity, Λ is remarkably expressive. It is a Turing-complete language,
capable of expressing any computation that a Turing machine, or any other commonly accepted
model of computation, can. This is due to the fact that any expression in any other language
can be encoded in Λ, through a similar process that we used to encode values in System F. Addi-
tionally, it is possible to define general recursion in Λ through the use of fixed-point combinators,
the most famous of which is the Y combinator.

1Languages whose “typechecking” is defined in their dynamics rules.
2Languages whose typechecking is defined in their statics rules.
3These notes are partially derived from 15-312 Spring 2017 course notes by Jake Zimmerman.

1

2.1 Definability 2 THE “UNTYPED” LAMBDA CALCULUS

2.1 Definability

We have already seen methods for encoding sums, products, natural numbers, and lists in a
language that only has function types: System F. These encodings are almost identical to
the encodings for Λ, and so aren’t covered here. However, we will discuss expressing general
recursion:

To see the idea behind expessing general recursion in Λ, we’ll use the example of the factorial
function. In PCF, we’d write this function as

fix fact : nat -> nat is
fn (n : nat) ifz(s(z); x.mult(fact(x)(n)))

Note that we need to refer to fact in the body of fact. One way we can achieve this in a
language without fix is to pass the function to itself as its first argument. So we would have

fact’ = fn (fact) fn (n) ifz(s(z); x.mult(fact(fact)(x))(n))
fact = fact’ (fact’)

This achieves general recursion, but notice that we’ve removed the type annotations from the
lambdas. This is because in a language like PCF, this self-referential expression is not well-
typed. This is evident from the fact that the fact’ function immediately takes an argument
of the same type as itself. The corresponding type must be infinite, and in fact negative and
impossible to express inductively or coinductively. However, in Λ, this does not matter. We can
define

λ fact. λn. . . . fact(fact) . . .

as we please.

However, writing this by hand is cumbersome, and so we create a function that performs this
passing-function-to-itself operation for us. This is known as a fixed-point combinator. For
example, the well-known Y combinator performs this operation:

Y , λF.(λf.F (f f))(λf.F (f f))

Take a close look at this combinator and make sure you understand why it creates the same
kind of self-reference described above. This particular fixed-point combinator was discovered by
Haskell Curry, and has the following property:

Y f = f(Y f) = f(f(Y f)) = . . .

If we give Y a self-referential function f , it produces an output which is equivalent to its own
infinite iteration under f . Mathematically, this is known as a fixed point of f , an input which
is identical to its corresponding output. This construct allows us to create general recursive
expressions. Notice especially how easy it is to introduce divergent computation through this
combinator. With Y, we can easily turn self-referential functions into recursive ones. An added
advantage is the ease of defining f . Whereas before we had to apply the self-reference explicitly
as in fact(fact), this is no longer necessary with the Y combinator; we may just write fact.

Why do we get these guarantees with the Y combinator? We argued that Y satisfies the fixed-
point relation above. As we saw when we studied PCF, one way of analyzing the fixed-point
combinator is that a functional can be generated for a recursive specification of a function which
takes a self-reference and “verifies” it. The equality between the functional applied to a candidate

2
.

2.2 Untyped = Unityped 3 DYNAMIC PCF

solution, and the candidate itself, is sufficient to show the correctness of the candidate, which is
deemed a solution. If we start with the candidate Y f , then Y f = f(Y f) holds, proving the
correctness of the candidate.

The Y combinator is not meant as a particularly practical method of writing recursive functions,
nor is Λ particularly practical as a programming language. However, it is a theoretically powerful
construct that encodes recursion directly into the lambda calculus.

2.2 Untyped = Unityped

Λ is called untyped, but in fact, it can be easily embedded in a typed language with recursive
types, such as FPC. The type of every expression in Λ is

rec{t.t→ t}

and expressions can be translated into FPC as

x† , x

λx.e† , fold(λ(x : rec{t.t→ t})e†

e1(e2)
† , unfold(e†1)(e

†
2)

Thus, we say that Λ is actually unityped, with every well-formed expression having type rec{t.t→
t}. Indeed, every expression in the lambda calculus is implicitly a function that takes its own
type and returns its own type. In this sense, dynamic typing is simply a particular instantia-
tion of static typing! It’s possible to reason about a supposedly untyped language within the
framework of recursive types and gain some of the advantages of type safety.

3 Dynamic PCF

Λ gets away with only having a single recursive type because of its simplicity. However, if we
want to add other primitives to a language, this doesn’t work so well. This is clear even in a
language which only contains functions and numbers: the statics no longer guarantee that we
can’t apply a number to an argument or case on whether a function is zero or successor. To
handle this, such a language must check, at runtime, that an operation that is meant to be
performed on numbers is actually being performed on a number, and similarly for functions.

This is the principle behind Dynamic PCF. DPCF is an modification of PCF which has only a
single type of expressions, but multiple classes of value that are checked as a program executes.
Its syntax looks almost identical to PCF, but without type annotations:

Exp d ::= x variable
num[n] numeral4

z zero
s(d) successor
ifz d {z ↪→ d0 | s(x) ↪→ d1} zero test
λ (x) d abstraction
d1(d2) application
fix x is d recursion

4The numeric literal construct is added for convenience. It should be treated as having identical semantics to
inductively built natural numbers, and we will elide the obvious rules.

3
.

3 DYNAMIC PCF

The statics of DPCF are the same as that of Λ: they simply check that an expression contains
no free variables. However, the dynamics are much more involved. Central to them is the notion
of class checking, which is defined by the judgments is_fun, is_num, isnt_fun, and isnt_num.
Class judgments are only defined on values, and expose the underlying structure of the value,
as follows:

num[n] is_num n λ (x) d is_fun x.d num[n] isnt_fun λ (x) d isnt_num

The reason class judgments are only defined on values is that they are used when a transition rule
needs to rely on the structure of a value: it is impossible to define dynamics rules for checking if
λ (x) d is zero or successor, or for substituting an argument into the body of num[n]. If the class
check fails, we use the judgment d err, and then propagate errors through the dynamics.

For example, the rules for app are defined as:

d1 7−→ d′1
d1(d2) 7−→ d′1(d2)

d1 err
d1(d2) err

d1 is_fun x.d
d1(d2) 7−→ [d2/x]d

d1 isnt_fun
d1(d2) err

Despite this, DPCF can be shown type safe. We simply modify our progress theorem to account
for the error judgment:

Theorem (Progress). If d ok, then either d val, or d err, or there exists d′ such that d 7−→ d′.

This is a much weaker theorem than before, as our code may now error at runtime despite
passing all static checks, but it still ensures that execution of a program in DPCF will never
get “stuck” if it is well formed.

As an example of a program in DPCF, consider the following implementation of addition:

fix plus is
fn (n) fn (m)

ifz n {
z => m

| s n’ => s (plus n’ m)
}

Note the lack of type annotations. If this function is evaluated with n and m as numbers, it will
return a number. But let’s think about what happens if n is not a number—the ifz construct
expects a number, so we will receive a runtime error. If m is not a number and n is nonzero,
then the s construct in the recursive case will fail. But if m is not a number and n is zero, then
this implementation simply returns m. Puzzling! The behavior of the program has become very
difficult to predict, a consequence of the lack of types.

Furthermore, the evaluation of this program is likely to be highly inefficient. It will be filled
with runtime checks for whether a term is a number or is a function, which slows things down
quite a bit.

4
.

4 HYBRID PCF

4 Hybrid PCF

Dynamic PCF is more interesting and easier to work with than the lambda calculus, but it
doesn’t come close to PCF in terms of safety. Every expression inDPCF now has the possibility
of erroring at runtime, without any way for us to ensure runtime safety. What if instead of
replacing all types in PCF with a dynamic interpretation, we simply added dynamic types to
PCF?

The result is a language called Hybrid PCF, or HPCF:

Cls l ::= num number
fun function

Typ τ ::= nat natural
τ1 → τ2 function
dyn dynamic

Exp d ::= x variable
num[n] numeral
z zero
s(d) successor
ifz d {z ↪→ d0 | s(x) ↪→ d1} zero test
λ (x) d abstraction
d1(d2) application
fix x is d recursion
l ! e tag
e @ l cast
l ? e test

This extension of PCF includes all the operations and type structure of PCF, except with the
new notion of classes. There are two classes, one for numbers and one for functions, which
roughly correspond to the number and function types, but have some differences:

1. Classes are checked at runtime, not compile-time. This has notable consequences for
performance, as we shall see.

2. Classes encode limited information about the underlying data. Notably, a function is just
a “function” in terms of class, with no information about argument or return value. (As
we shall see, the implicit argument and result are both of dynamic type.)

3. Classes are not necessarily accurate. An assumption that a value is of some class which is
incorrect will be met with a runtime error.

Note that this definition of classes exactly characterizes “types” in languages like Python, which
are dynamically checked. When Python refers to “types”, it really refers to “classes”!

Now when we write a program, if we would like then we are able to use dynamic typed expres-
sions. Expressions of type dyn are introduced via the tag construct and eliminated via the cast
construct. These constructs are remarkably similar to the extensible type exn in Standard ML!
Similarly to extensibles, expressions of arbitrary type become dynamic when tagged with the
appropriate label (class), and recovered when the label is stripped. Unlike extensibles, the cast
operation is inherently unsafe. If a cast is performed on an expression of incorrect class, the
dynamic behavior requires us to raise a runtime error. We’ll come back to the similarity here
when we discuss dynamic classification later in the course.

5
.

4.1 Statics 4 HYBRID PCF

We give the programmer the ability to test for the class of a dynamic expression using a test
construct. As we shall see, this construct is flawed in some major ways.

4.1 Statics

The statics for HPCF are the same as for PCF except for the dynamic components:

Γ ` e : nat
Γ ` num ! e : dyn

Γ ` e : dyn→ dyn
Γ ` fun ! e : dyn

Γ ` e : dyn
Γ ` e @ num : nat

Γ ` e : dyn
Γ ` e @ fun : dyn→ dyn

Γ ` e : dyn
Γ ` l ? e : bool

Note that we use a boolean type here. We don’t specify which interpretation of booleans should
be preferred—perhaps a sum, or a number, or baked into the language. Now that we’ve seen
how to do each of these approaches, we can get creative!

Note how weak the statics are for this system. From an expression of dynamic type, it is statically
legal to cast it to either a number or a function. Only at runtime will the error be caught.

4.2 Dynamics

The dynamics for the new cases are eager in the arguments of tagging, casting, and testing.
These are the interesting rules:

e val
l ! e val

l ! e val
(l ! e) @ l 7−→ e

l ! e val l 6= l′

(l ! e) @ l′ err
l ! e val

l ? (l ! e) 7−→ true
l ! e val l′ 6= l

l′ ? (l ! e) 7−→ false

These rules indicate that tagged values are values, and we may either successfully cast or receive
a runtime error in event of an unsuccessful cast. We can test for whether a value is of a partic-
ular label, receiving a boolean in return. Note that the error judgment should be propagated
throughout the rules for it to be complete.

4.3 Boolean Blindness

The class instance test construct leaves much to be desired. For this section, we can make our
point a bit clearer using some Java-like syntax. Consider the following snippet:

Object x = ...
if (x instanceof SomeClass) {

SomeClass y = (SomeClass) x;
}

This is an arguably reasonable piece of Java code, but it falls prey to boolean blindness: the
phenomenon that a reliance on boolean tests about our data tells us nothing statically true
about the data. Here, we would like to safely cast x to SomeClass, and do so via an instanceof
test. But from the typechecker’s view, instanceof may be an arbitrary boolean predicate, which
simply returns a boolean value and continues execution. We are still left with the expression
x, about which we have learned nothing from a static point of view! Arguably the programmer

6
.

4.4 Optimization of Hybrid PCF 4 HYBRID PCF

is now somewhat more secure in the cast, but there is no static proof of safety here. Contrast
this with the ML case construct, which statically ensures the safety of each of its branches
at compile-time. Boolean blindness is a crutch for a language without statically checked sum
types!

Knowing this, you might ask why we do not introduce some equivalent to the case construct for
eliminating dynamic types and instead rely on the boolean-blind class instance test operator.
Since dynamic types can error out anyway, we have no way of propagating static information
about a dynamic value. We could define syntactical sugar for “pattern matching” on a dynamic
value, but it would never give us the safety of static checking back anyway.

4.4 Optimization of Hybrid PCF

Let’s port our DPCF implementation of addition to HPCF:

fix plus : dyn is
fun ! fn (n : dyn)

fun ! fn (m : dyn)
ifz (n @ num) {

z => m
| s n’ => num ! (s ((((plus @ fun) (num ! n’)) @ fun m) @ num))
}

Our type annotations are back, but they’re not very helpful. If you examine the code, it’s clear
that it has the exact same runtime behavior as the DPCF program, since all computation is
dynamic. In fact, we have reified the dynamic check behavior: every instance of tag and cast is
a dynamic operation that will slow the program down, and now we write them explicitly.

But now that we have the whole PCF type system, we can optimize this implementation. If
we are fully convinced a dynamic value has some class, we may as well strip away some pairs
of tagging and casting.5 We can repeat this process until we make a realization: this addition
function only has well-defined behavior when both of its arguments are numbers, and it returns
a number in that case. So we are really being quite superfluous when we say that it has type
dyn. We might as well write it like this:

let val plus =
fix plus : nat -> nat -> nat is

fn (n : nat) fn (m : nat)
ifz n {

z => m
| s n’ => s (plus n’ m)
}

in
fun ! fn (n : dyn) fun ! fn (m : dyn)

num ! plus (n @ num) (m @ num)
end

5For the curious, this is one operating principle of just-in-time (JIT) compilers for languages like JavaScript!

7
.

5 DYNAMIC VS. STATIC

So, after doing all this optimization to reduce the dynamic overhead, we have come full circle.
This is just a PCF function with static types, and a wrapper around it that casts the incoming
arguments.6 Why did we need dynamic types in the first place?

5 Dynamic vs. Static

The debate between dynamic and static types is perennial. Proponents of dynamic types often
claim:

1. It’s easy to write dynamic programs. Many programs you write tend to “just work”, without
compiler complaints.

2. Dynamic code is more concise because of its lack of type annotations.

3. Dynamic code is more flexible in behavior, for example being able to handle a wide variety
of inputs.

However, each of these points is not particularly valid. A static type system counters each:

1. Dynamic programs may have a easier learning curve, but reasoning about your code and
designing large-scale systems is next to impossible without real type checking. Runtime
errors abound!

2. An ML-style type inference system often results in code that is arguably more concise than
their dynamically typed counterparts.

3. Flexibility is a two-edged sword—now a user must guess which capabilities are or are
not supported by a dynamic function. Even worse, flexibility in function return values is
downright negative, as the user will have to make sense of the output!

In addition, there are features that only static type systems support:

1. A system of modules which enforces data abstraction and safety

2. Generic programming driven by the type of data (like map)

3. The remarkable experience that programs satisfying a type specification must be correct.
We didn’t get into this much, but a concept called parametricity in polymorphic languages
(like System F, or ML) means that the type of an expression says a lot about it! For
example, there is only one pure function of type ’a -> ’a, and only one function of type
’a -> ’b -> ’a. When you utilize the type system to its full capabilities, it tends to be
the case that if your program compiles, it must be correct!

In the end, dynamic typing is a particular mode of use of static types, and dynamic languages
can be analyzed in a type-based framework and compared to more powerful type systems. They
have an easier learning curve and considerable allure, but ultimately certain things are only
possible in a static framework.

6The astute observer will notice that the behavior described earlier, about what happens when m is not a
number, has changed. Think about whether we are justified in doing this optimization in light of that fact.

8
.

