
Recitation 6:
System F and Existential Types
15-312: Foundations of Programming Languages

Serena Wang, Charles Yuan

February 21, 2018

We saw how to use inductive and coinductive types last recitation. We can also add polymorphic
types to our type system, which leads us to System F. With polymorphic types, we can have
functions that work the same regardless of the types of some parts of the expression.1

1 System F

Inductive and coinductive types expand the expressivity of T considerably. The power of type
operators allows us to genericly manipulate data of heterogeneous types, building new types
from old ones. But to write truly “generic” programs, we want truly polymorphic expressions—
functions that operate on containers of some arbitrary type, for example. To gain this power,
we add parametric polymorphism to the language, which results in System F, introduced by
Girand (1972) and Reynolds (1974).

Typ τ ::= t type variable
τ1 → τ2 function
∀(t.τ) universal type

Exp e ::= x variable
λ (x : τ) e abstraction
e1(e2) application
Λ(t) e type abstraction
e[τ] type application

Take stock of what we’ve added since last time, and what we’ve removed. The familiar type
variables are now baked into the language, along with the universal type. We also have
a new form of lambda expression, one that works over type variables rather than expression
variables.

What’s missing? Nearly every other construct we’ve come to know and love! As will be the case
repeatedly in the course, our tools such as products, sums, and inductive types are subsumed
by the new polymorphic types. The result is an extremely simple System F that is actually
even more powerful.

1These notes are derived from 15-312 Spring 2017 course notes by Jake Zimmerman.

1

1.1 Statics 1 SYSTEM F

1.1 Statics

Now that types have variables, we need to decide which type abt’s are considered valid. We
introduce the following judgment:

∆ ` τ type

meaning that in the type context ∆, τ is a valid type. The type context ∆ contains the type
variables that we have seen so far.

We also attach the type context to the typing judgment, which now looks like:

∆,Γ ` e : τ

To define what types are valid, we essentially just want to state that closed types (ones with no
free variables) are valid, and open types are invalid. These rules express that fact:

∆, τ type ` τ type

∆ ` τ1 type ∆ ` τ2 type

∆ ` τ1 → τ2 type

∆, t type ` τ type

∆ ` ∀t.τ type

And now we may define the typing judgment. The cases for variable, lambda, and application
are as they were in System T; we simply carry ∆ along for the ride. There are two interesting
new rules:

∆, t type,Γ ` e : τ

∆,Γ ` Λ(t) e : ∀t.τ
∆,Γ ` e : ∀t.τ ′ ∆ ` τ type

∆,Γ ` e[τ] : [τ/t]τ ′

Type lambdas are the introduction of universal types, and type applications are their elimina-
tion. The type application rule is saying that if some expression e is valid for all choices of t,
then it will also be valid when the actual type τ is substituted for t (provided that τ is a valid
type).

This is very similar to polymorphic types in ML, where types may contain type variables. Be
aware that ML usually leaves the type lambda implicit. That is, the ML type

(’a -> ’b) -> ’c

is actually
∀α.∀β.∀γ.(α→ β)→ γ

o in System F. Observe that ML implicitly places the type lambdas at the front of the type.
As we will soon see, this is an important distinction between ML and System F. ML cannot
directly express a type like

∀α.α→ ∀β.β

which System F easily can do.

ML also does not explicitly apply types. Consider the polymorphic identity function in F:

id , ∀α.λ (x : α)x

This function is truly polymorphic, as we can apply id[nat] to get the identity function on
naturals, id[nat→ nat] to get the identity function on functions from naturals to naturals, etc.
However, in ML, the type checker automatically applies the appropriate type argument to its
type abstractions. id 0 and id (fn (x:nat) => x) implicitly involve the specialization of the
function id.

2
.

1.2 Dynamics 1 SYSTEM F

1.2 Dynamics

System F also has a remarkably simple dynamics. The rules for lambda and application remain
the same as in lazy/eager System T, and we need only introduce the rules for type lambda and
type application.

Λ(t) e val
e 7−→ e′

e[τ] 7−→ e′[τ] Λ(t) e[τ] 7−→ [τ/t]e

That’s it! Type functions are values, type applications are eager, and they eventually substitute
a type for a variable in a type abstraction.

Examples:

Λ(α)λ (x : α)x is the polymorphic identity function

Λ(α) Λ(β)λ (f : α→ β)λ (x : α) f(x) is the polymorphic applicator function

1.3 Church Encodings

System F is great, but we’re still pining for all our old types like natural numbers, lists, etc.
But what if I told you that universal types could replace all of them? As it turns out, we can
construct products, sums, inductive types, etc. in System F, using a scheme called Church
encodings.

How would we express nat in System F?

nat , ∀t.t→ (t→ t)→ t

It may be difficult at first glance to see why this polymorphic type expresses everything we need
for nat. Using this definition of nat, how would we write z, s, and rec - all the stuff we used
to have for nat in System T?

z , Λ(t)λ (b : t)λ (s : t→ t) b

s , λ (x : nat) Λ(t)λ (b : t)λ (s : t→ t) s(e[t](b)(s))

iter{τ}(e1, x.e2, e) , e[τ](e1)(λ (x : τ) e2)

As you can see in the definitions for z, s, and rec, the first polymorphic term taken in to
the function represents the zero base case, and the second polymorphic term represents the
successor case. We only need a way for us to define zero and the successor for us to be able to
construct a natural number, and so we only need these two arguments before the polymorphic
function gives us something of type nat.

In the Church encoding, the number is its own recursor! That is a powerful idea. A number is
only as meaningful as the ability to count with it, and so it is fitting that numbers be represented
using their recursor.

How would we express sum and product types in System F?

τ1 + τ2 , ∀t.(τ1 → t)→ (τ2 → t)→ t

τ1 × τ2 , ∀t.(τ1 → τ2 → t)→ t

3
.

2 EXISTENTIAL TYPES IN SYSTEM FE

For sum types, we simply need something of type τ1 or something of type τ2 to be able to get
something of type τ1 + τ2. By a similar argument, we need something of type τ1 and something
of type τ2 to be able to construct a term of type τ1 × τ2.

l · e , Λ(t)λ (l : τ1 → t)λ (r : τ2 → t) l(e)

r · e , Λ(t)λ (l : τ1 → t)λ (r : τ2 → t) r(e)

〈e1, e2〉 , Λ(t)λ (h : τ1 → τ2 → t)h(e1)(e2)

e · l , e[τ1](λ (l : τ1)λ (r : τ2) l)

e · r , e[τ2](λ (l : τ1)λ (r : τ2) r)

Each function argument tells us how to interact with the sum or product type internally. As
an exercise, try to define case in the encoding.

We can also now create polymorphic data structures, which you’ve seen in SML in 15-150:

α list , ∀α.µ(t.1 + (α× t))
α stream , ∀α.ν(t.1 + (α× t))

Note that the thing inside of the ∀ is a type operator! However, α.µ(t.1 + (α× t)) and α.ν(t.1 +
(α× t)) are not polynomial type operators since they contain inductive and coinductive types.
We can still change our map{t.τ} to work with these type operators, though, and you’ll see how
to do this in Assignment 3.

2 Existential Types in System FE

Existential types are the foundation of modularity. The main idea of modularity is to separate
the client from the implementation. Let’s see whether adding existential types actually gives
us the ability to express more than we could with just polymorphic types before. We can add
existential types to System F using the primitives below, leading to System FE.

Typ τ ::= . . .
∃(t.τ) existential type

Exp e ::= . . .
pack{t.τ}[ρ](e) existental pack
open{t.τ}{ρ}(e1; t, x.e2) existential unpack

pack introduces an existential type, where ρ is the concrete implementation type that won’t be
visible outside the package, and where e is the implementation of the existential type.

open eliminates an existential type by substituting e1 for x in e2. Here, e1 is the packed-up
library, which has some existential type, and τ is the interface type, which uses t somewhere
within it. x is the interface of the library that the client can use, and e2 is the client’s code,
which uses the library.

4
.

2.1 Statics 2 EXISTENTIAL TYPES IN SYSTEM FE

2.1 Statics

Remember that we now have a type context ∆ for our typing judgments, and a judgment for
checking validity of types.

∆, t type ` τ type

∆ ` ∃(t.τ) type

∆ ` ρ type ∆, t type ` τ type ∆,Γ ` e : [ρ/t]τ

∆,Γ ` pack{t.τ}[ρ](e) : ∃(t.τ)

∆,Γ ` e1 : ∃(t.τ) ∆, t type,Γ, x : τ ` e2 : τ2 ∆ ` τ2 type

∆,Γ ` open{t.τ}{τ2}(e1; t, x.e2) : τ2

As you can see in the statics rule for open, abstraction is enforced statically. The client code
simply doesn’t have the implementation type in scope.

2.2 Dynamics

e val
pack{t.τ}[ρ](e) val

e 7−→ e′

pack{t.τ}[ρ](e) 7−→ pack{t.τ}[ρ](e′)

e1 7−→ e′1
open{t.τ}{ρ}(e1; t, x.e2) 7−→ open{t.τ}{ρ}(e′1; t, x.e2)

e val
open{t.τ}{ρ}(pack{t.τ}[ρ](e); t, x.e2) 7−→ [ρ, e/t, x]e2

The only that’s actually interesting is the last one, which tells us that there are no secrets at
runtime. We get direct access to the implementation type, which we can use for whatever we
want (i.e., optimizations). Thus, data abstraction is a compile-time discipline, and there is no
boundary between the client and implementation at execution time. Using the protections of
abstract data structures comes at zero cost to the program when it runs!

2.3 Examples with Queues

So how do we actually use existential types? Let’s look at how we would implement queues in
System FE.

τ , 〈emp ↪→ t, enq ↪→ (nat× t)→ t, deq ↪→ t→ 1 + (nat× t)〉
ρ , nat list

queue , pack{t.τ}[ρ](e)

The e that we use to define queue is below. We’ll use some syntax from SML in the example
code below.

e , 〈emp ↪→ [],

enq ↪→ λ (x : nat× (nat list)) (x · l) :: (x · r)

deq ↪→ λ (q : nat list) case rev(q) {[] ↪→ none | f :: qr ↪→ some(〈f, rev(qr)〉)}〉

5
.

3 BISIMULATIONS

When we try to get the head of the queue, we can use open as in the code below. Note, however,
that we cannot return x · deq(q) since the thing we return must have extrinsic value.

open{t.τ}{nat option}(queue; t, x.

let q = x · enq(〈7, x · enq(〈5, x · enq(〈2, x · emp〉)〉)〉)
in case x · deq(q) {some(x) ↪→ some(x · l) | none ↪→ none}
end)

3 Bisimulations

Bisimulations allow us to compare two implementations of an abstract type and see whether
they are equivalent. To do so, we define a relation R over expressions of the abstract type. This
relation will essentially convert one of the implementation types into the other implementation
type.

Suppose we have two implementations of queues eref and ecand. Let’s do some pattern-matching
so that we can easily refer to each part of each implementation.

eref = 〈emp ↪→ empref,

enq ↪→ enqref,

deq ↪→ deqref〉
ecand = 〈emp ↪→ empcand,

enq ↪→ enqcand,

deq ↪→ deqcand〉

We want to show eref R ecand.

To show this, what we want to show is that R respects the operations of our existential type.

Recall that our existential type was this:

∃(t.〈emp ↪→ t, enq ↪→ (nat× t)→ t, deq ↪→ t→ 1 + (nat× t)〉)

Respecting the operations means that we want to “replace t with R and prove the statements
that result”:

empref R empcand

enqref (nat×R)→ R enqcand

deqref R → (nat×R) deqcand

It’s not exactly obvious what these mean, so let’s write them out more elaborately. We call
these our proof obligations:

1. emprefR empcand

2. For all n,

• Assume qref R qcand.

• Prove enqref (n) (qref) R enqcand (n) (qcand).

3. Assume qref R qcand. Want to show either:

6
.

3 BISIMULATIONS

• deqref (qref) ∼= deqcand (qcand)

• deqref (qref) ∼= some(〈n, rref〉) and deqcand (qcand) ∼= some(〈n′, rcand〉) such that n ∼=
n′ and rref R rcand.

So first we have to define our relation:

l R 〈b, f〉 ⇐⇒ l ∼= b@ (rev f)

Now that we’ve defined our relation, showing everything remaining is just a matter of hand-
waving our way through some proofs. Note that proofs of bisimulations in this class are a rare
exception to our previous rules of formality!

Let’s put the two implementations here so we can refer back to them later:

eref , 〈emp ↪→ [],

enq ↪→ λ (x : nat× (nat list)) (x · l) :: (x · r)

deq ↪→ λ (q : nat list) case rev(q) {[] ↪→ none | f :: qr ↪→ some(〈f, rev(qr)〉)}〉

ecand , 〈emp ↪→ 〈[], []〉,
enq ↪→ λ (x : nat× (nat list× nat list)) 〈(x · l) :: (x · r · l), x · r · r〉
deq ↪→ λ(q : nat list× nat list)

case(x · r){[] ↪→ case rev(bs) {[] ↪→ none | b :: bs′ ↪→ some(〈b, 〈[], bs′〉〉)}
| f :: fs′ ↪→ some(〈f, 〈x · l, fs′〉〉)〉

And now let’s show that R respects the relation:

1. emprefR empcand

empcand
∼= [] @ (rev [])
∼= [] @ []

∼= []

∼= empref

2. enqref (n) (qref) R enqcand (n) (qcand)

Let qcand = 〈bcand, fcand〉.
Assume qref R qcand.
Thus, qref ∼= bcand @ (rev fcand).

enqcand (n) (qcand) ∼= (n :: bcand) @ (rev fcand)
∼= n :: (bcand @ rev fcand)
∼= n :: qref
∼= enqref (n) (qref)

3. Assume qref R qcand. Want to show either:

Let qcand = 〈bcand, fcand〉.
Assume qref R qcand.
Thus, qref ∼= bcand @ (rev fcand).
There are 3 cases:

7
.

4 DEFINABILITY IN SYSTEM F

a) qref = [], qcand = 〈[], []〉

deqref (qref) ∼= deqref []

∼= . . .
∼= none

deqcand (qcand) ∼= deqref 〈[], []〉
∼= . . .
∼= none

b) qref = n :: q′ref, qcand = 〈bcand, f :: f ′cand〉

qref R qcand

R 〈bcand, f :: f ′cand〉
∼= bcand @ (rev f :: f ′cand)
∼= bcand @ (rev f ′cand) @ [f]

rev qref ∼= rev(bcand @ (rev f ′cand) @ [f])
∼= f :: (rev(bcand @ (rev f ′cand))

Thus, rev qref ∼= f :: (rev(q′ref)), where q′ref
∼= bcand @ (rev f ′cand). Therefore,

q′ref R 〈bcand, f ′cand〉.

deqcand (qcand) ∼= deqcand 〈bcand, f :: f ′cand〉
∼= some(〈f, 〈bcand, f ′cand〉〉)
∼= none

deqref (qref) ∼= case rev(qref) {[] ↪→ none | f :: qr ↪→ some(〈f, rev(qr)〉)}
∼= some(〈f, rev(rev(q′ref))〉)
∼= some(〈f, q′ref〉)

c) qcand ∼= 〈n :: bcand, []〉
This proof is just as tedious and equally doable as the previous case with hand
waving.

Since this example was simple, we were able to do everything in symbols, with only a few
assumptions (like associativity, reversing lists, etc.).

For your homework, you may not be able to formalize your bisimulation proofs all that rigor-
ously. You’ll probably have a paragraph of prose for proof obligation.

4 Definability in System F

We introduced the new language System FE to add existential types. But is it really necessary
to bake in existentials as part of the core language? Could universal types be sufficient to convey
the data abstraction that defines an existential type?

What does it mean to have a value of the type ∃(t.τ)? It means that we have some type τ that
uses the representation type t, such that we may perform computation using τ in a way that is
agnostic of the true identity of t. Suppose we have such a representation t. Such a computation
might then look like τ → τ2 where t is not allowed to appear in τ2.

8
.

4 DEFINABILITY IN SYSTEM F

Think about it this way: we defined two alternative queue implementations eref and ecand. Let’s
denote their representation types (recall, one list and two lists, respectively) as ρref and ρcand.
A client may use the queue data structure to perform computation, but cannot return a value
containing type ρref or ρcand explicitly. That would break the data abstraction, as somehow the
user would now be able to distinguish the two queue implementations from each other!

So what we really want is to say, for all representation types, a client may use the interface
functions to perform a computation, then must discard the actual representation type in their
output. That seems like a job for universal types...

Let’s try it out. Suppose the client has a type u over which they need to do computation using
the abstract data type. That abstract type has type ∃(t.τ), so we can say that from τ we wish to
derive u, and we want to be able to do this over all representation types t. That’s ∀(t.τ → u).

Only one step remains. An existential type, in turn, cannot know about its client, so we must
quantify over u. The result is this definition of existential types:

∃(t.τ) , ∀(u.∀(t.τ → u)→ u)

How do we prevent the type variable t from appearing in u? Observe that in the final occurrence
of u, t is not in scope at all! That’s the beauty of this encoding of existential types. The fact
that the representation type cannot be referred to in the output of the computation is enforced
by the type itself. It’s impossible to write a type that violates the data abstraction!

And finally, we wish to derive the definitions of pack and open. Based on the definition of the
existential type, defining these two is pretty much a game of matching up types. The definitions
are:

pack{t.τ}[ρ](e) , Λ(u)λ (x : ∀(t.τ → u))x[ρ](e)

open{t.τ}{τ2}(e1; t, x.e2) , e1[τ2](Λ(t)λ (x : τ) e2)

Check that these definitions have the correct types, and align with our understanding of data
abstraction. Congrats! You’ve successfully shown that FE is only as strong as F. In practice
explicit existentials are convenient, so we’ll keep them around, but this is another testament to
the power of pure System F.

9
.

