Recitation b:
Inductive and Coinductive Types

15-312: Foundations of Programming Languages
Serena Wang

February 14, 2018

We saw how to use polynomial types in generic programming last recitation. We can extend
polynomial types to inductive and coinductive types, which allows us to express more kinds of
data structures.

Next week, we’ll see we can also go further to introduce polymorphic types into our programming
language, which will eventually lead us to System F.

1 Inductive Types

An inductive type p(t.7) is the least type that contains ¢.7. In other words, inductive types are
characterized by the structure of the constructors they are built with.

Consider the following modification of System T with products and sums, which now includes
inductive types.

Typ 7 5= 71— T function
1 unit
1 X Ty product
0 void
T1 + Ty sum
wu(t.T) inductive type
Exp e = « variable
Az:T)e abstraction
e1(e2) application
0 empty pair
(e1,€2) pair
e-1 left projection
e-r right projection
l-e left injection
r-e right injection
casee {l-x] < e; | r-x9 > €2} case
fold{t.7}(e) inductive fold
rec{t.7}(z.e1;e2) inductive recursion

1 INDUCTIVE TYPES

Note how nat is not a type here anymore. This is because we can define nat = u(t.1 +t) by
using inductive types instead of having a special definition of the nat type in our system. And
likewise, all numbers can be defined in terms of inductive fold, and arithmetic can be defined
in terms of inductive recursion.

Also note that p takes in a polynomial type operator and returns another type. If ¢ is a
polynomial type operator (such as t.1 + t), then u(¢) is the type inductively defined by ¢. In
order to actually have values with these inductive types, however, we also need the fold and
rec constructs to allow us to introduce and eliminate expressions of this type.

It can be difficult to understand what fold and rec are actually doing here. Although fold
and rec are actually operators on expressions, let’s think of them as functions for a bit. If they
were functions, fold and rec would have these types:

fold(t.7) : [u(t.T)/t]T — p(t.T)
rec(t.7): ([p/tlT — p) = p(t.T) = p

There is a lot of substitution in this view of fold and rec, so let’s go through an example
showing how fold and rec are actually used. We can use inductive types to define lists as
you’ve seen in SML.

list 2 p(t.1 + (int x t))

What then would be the type of foldjst?

fold{u(t.1 + (int x t))} : [u(t.1 + (int x ¢))/t](1 + (int x t)) — p(t.1 + (int x t))
:[1ist/t](1 + (int x list)) — list
: 1+ (int x list) — list

As you can see, if we give foldyjsy the empty product or the product of an int and another
list, foldijst Will give us back a new list! If we give foldiist the empty product, foldy;et
will give us an empty list, and if we give foldjjsy an int and a list, we’ll get back that int
cons’d onto the list. The correspondence between fold;;st and nil and cons can also be seen
in the following type isomorphism:

foldyist : (1 + (nat x list)) — list = (1 — list) X (nat x list — list)

Let’s look at the type of recyisty as well. You can think of p as the result type of your recursive
evaluation over the inductive data structure, which in this case is a list.

rec{pu(t.1+ (int x t))} : ([p/t]1 + (int x t) — p) = p(t.1+ (int x t)) — p
: (14 (int X p) = p) = p(t.14 (int x t)) = p
: (14 (int X p) = p) — list — p

Thus, recyist first takes in a function that can compute an expression of type p for a list, given
that we already have every recursive result for the list. This function is thus like the inductive
case in our original rec for natural numbers. Using this function, recjis¢ can then compute an
expression of type p for any list. This should in fact remind you of what the map construct does
in generic programming, which is actually what we will use to define the dynamics for rec.

1.1 Statics 2 COINDUCTIVE TYPES

1.1 Statics

e: [u(t.T)/t)T oo [/tlrber: 7 Thkey:p(tr)
'k fold{t.7}(e) : u(t.7) 'k rec{t.t}(xz.e1;e9) : 7

1.2 Dynamics

Note how we use map to apply the recursor what was inside of the fold!

fold{t.7}(e) val

ey — €
rec{t.7}(x.e1;e2) —> rec{t.7}(x.e1;€})

rec{t.7}(z.e;;fold{t.7}(e2)) — [map{t.7}(y.rec{t.7}(x.e1;y))(e2)/x](e1)

2 Coinductive Types

In contrast to inductive types, a coinductive type v(t.7) is characterized by the behavior of the
destructors we use to peer inside the expression.

Consider the following updated syntax, which now includes coinductive types.

Typ 7 o=
v(t.T) coinductive type

Exp e == ...
gen{t.7}(x.e1;e2) coinductive generation
unfold{t.7}(e) coinductive unfold

Just like p, v takes in a polynomial type operator and makes a new type. Again, although gen
and unfold are not actually functions, let’s look at the types they would have if we were to
define them using function types.

gen(t.7) : (p — [p/t]T) = p = v(t.7)
unfold(t.7) : v(t.7) — [v(t.7)/t]T

This is pretty abstract, so let’s look at using gen and unfold with the coinductive interpretation
of int lists. As you’ve seen in 15-150 and in lecture yesterday, streams can be used to encode
an infinite data structure. Using coinductive types, we can define lists containing ints that are
kind of like finite streams.

colist = y(t.1 + (nat x t))

2.1 Statics 2 COINDUCTIVE TYPES

What then would be the type of gen

?
colist*

gen{t.1 + (nat x t)} : (p — [p/t](1 + (nat x t))) = p — v(t.1 + (nat x t))
:(p— (14 (nat x p))) = p — v(t.1 + (nat x t))
:(p— (14 (nat x p))) — p — stream

You can think of p as the type of your state, so the function given to gen of the type p —
(1 + (nat x p)) is kind of like a state transition function or state automaton. Once given an
expression of type p representing the current state, we can use the function to get either 1
(representing the end of the colist) or the next number in the stream (the nat in the product)
and the next state (the p in the product). You can then think of the p in the middle of the
type for gen as the “seed state” of the stream. The way gen relies on a function to get the next
“state” of the stream is also analagous to how rec relies on a function to compute a final result
based on previous inductive cases.

Let’s now look at the type of unfoldcorist.

unfold(t.1 + (nat x t)) : v(t.1 + (nat x t)) — [v(t.1 + (nat x t))/t](1 + (nat x t))
:v(t.1+ (nat x t)) — (14 (nat x v(t.1 + (nat x t))))
: colist — (1 + (nat x colist))

Note that we can have two cases for the result of unfoldco1ist. In the first case, we get back the
empty product, which represents the end of the list. In the second case, we get a product where
the left projection corresponds to the head of the list and the right projection corresponds to
the tail of the list. In this way, unfoldc,1ist is able to express both of the operations we need
to interact with the coinductive interpretation of lists.

2.1 Statics

F'key:m Tiz:imber:[n/tr F'Fe:v(tr)
't gen{t.7}(x.e1;e2) : v(t.7) I'Funfold{t.7}(e) : [v(t.T)/t]T

2.2 Dynamics

e— €
gen{t.7}(x.eq;ez) val unfold{t.7}(e) — unfold{t.7}(e’)

unfold{t.7}(gen{t.7}(x.e1;e2)) — map{t.7}(y.gen{t.7}(z.e1;y))([e2/x]e1)
Notice that the rule for stepping unfold is exactly the dual of the rule for stepping rec.

