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Finite data structures in a programming language are created from the amalgamation of smaller
structures, starting from the base types. Most useful structures can be constructed using two
language features: product and sum types.

1 Products

The product of types τ1 and τ2, τ1 × τ2, is the type of tuples (e1, e2) where e1 : τ1 and e2 : τ2.
Products are familiar to functional programmers as a way of passing multiple arguments to
functions and obtaining multiple results from them. They also represent the coupling together
of several independent typed fields, since to have a value of product type, one must have a value
in each of the product’s fields.

Consider the following modification of System T, augmented with product types. Note the
slightly different recursor, which now only binds one predecessor. We’ll get back to that in a
moment.

Typ τ ::= nat number
τ1 → τ2 function
unit unit
τ1 × τ2 product

Exp e ::= x variable
z zero
s(e) successor
iter{z ↪→ e0 | s(x) ↪→ e1}(e) recursion
λ (x : τ) e abstraction
e1(e2) application
() empty pair
(e1, e2) pair
e · l left projection
e · r right projection

This is a language with binary products. The values of product type are created by the pair and
empty pair constructors, their introduction forms, and they are converted back into their
constituent types by the left and right projections, their elimination forms. Despite only
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1.1 Statics 1 PRODUCTS

having binary products, we may encode n-ary products by nesting binary products in arbitrary
order.

The unit type is the type of the empty product, with no fields. It has one value, the empty
pair. While it may seem somewhat useless, seasoned ML programmers recognize it as the return
type of functions with side-effects, the parameter type of suspended computations, etc. Though
unit conveys no real data, it has tremendous utility in programming languages.

Mainstream programming languages often conflate unit with void, a different concept alto-
gether, often speaking of functions of “void return type.” In programming language theory we
use the proper terminology, unit!

Examples of products:

() : unit

(z, z) : nat× nat

(z, (s(z), s(z))) : nat× (nat× nat)

(λ (x : nat)x, λ (x : nat→ nat)x) : (nat→ nat)× ((nat→ nat)→ nat→ nat)

Products are associative, so we often leave off the parentheses when the nesting order is arbi-
trary: nat× nat× nat instead of nat× (nat× nat).

There are also alternative notations for product types: a tupled form

(τ1, τ2, τ3)

and various labeled forms
〈left ↪→ τ1, right ↪→ τ2〉

These notations typically mean exactly what they look like, and we use them to simplify our
reasoning. In particular, labels are helpful to give names to the fields in a tuple.

The projections retrieve the left and right branches of a tuple in the natural way.

1.1 Statics

Γ ` () : unit

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` (e1, e2) : τ1 × τ2

Γ ` e : τ1 × τ2
Γ ` e · l : τ1

Γ ` e : τ1 × τ2
Γ ` e · r : τ2

1.2 Dynamics

This is an eager dynamics for products. Think about how the rules would change for a lazy
dynamics!

() val

e1 val e2 val

(e1, e2) val

e1 7−→ e′1
(e1, e2) 7−→ (e′1, e2)

e2 7−→ e′2
(e1, e2) 7−→ (e1, e

′
2)

e1 val e2 val

(e1, e2) · l 7−→ e1

e1 val e2 val

(e1, e2) · r 7−→ e2
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2 SUMS

2 Sums

Sum types, denoted τ1 + τ2, are a tagged disjoint union of the types τ1 and τ2. That is, a value
of type τ1 + τ2 contains either a value of type τ1 or a value of type τ2, along with the machinery
to determine which “branch” is contained. The most common appearance of sum types is in
ML, with algebraic datatypes:

datatype token = Number of int | Identifier of string | Semicolon

Here, a value of type token contains a number, an identifier, or a semicolon. Each possible
branch contains a label and an internal type: int, string, or in the case of semicolon, unit.

We may represent the above type, without labels, as a sum:

int + string + unit

Note how sums are different from products: instead of containing one field of each of the types,
it contains exactly one of the types.

Sums are not the same as the crude “unions” in the C family, in that a value of sum type stores
which branch was taken, and attempting to view the value from any other branch is prohibited
by the type system. They are not the same as enumerations in C, Java, Python, etc., which are
largely incapable of storing internal data (and usually not typesafe either). And finally, they
are also not the same as class hierarchies in so-called object-oriented languages, though classes
are often used to emulate sum types to varying degrees of success.

Instead, sums are a typesafe manner of representing choice, giving the language flexibility
without introducing unsafe type coercions or runtime checks.

We can extend System T with sums:

Typ τ ::= . . .
void void
τ1 + τ2 sum

Exp e ::= . . .
l{τ1; τ2} · e left injection
r{τ1; τ2} · e right injection
case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} case

This language contains binary sums, whose values are introduced by the left and right injec-
tions, and eliminated by the case expression.

It also contains the type void, which is the empty sum. A type with no branches can have no
values, so void is not inhabited by any values—it is truly empty. This is why it does not make
sense for a function to return void; since there are no values of this type, if anything it would
mean that the function does not return at all!

The injections correspond to the two branches of a binary sum. An injection attaches a “label”
to its operand, signifying that the result takes either the left or the right branch of the sum.

Since the type of the branch that was not taken is not given by e, we explicitly provide the
types of both branches to the injections. When the types are clear, we may omit them in the
syntax for a shorthand:

l · e r · e
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The case expression decomposes a value of sum type, and depending on whether the contained
value is of the left or right branch, binds it into either e1 or e2.

Examples of sums:

l · z : nat + τ

r · s(z) : τ + nat

l · r · λ (x : nat)x : (τ1 + (nat→ nat)) + τ2

Try to derive the types of these expressions, as it might not be obvious at first glance. We wrote
that the types on the right contain the type τ , signifying that any type can be in that branch,
depending on the type parameter we gave to the injection.

Now we look at the case expression:

case l{nat→ nat; nat} · λ (x : nat)x {l · x1 ↪→ x1(z) | r · x2 ↪→ x2}

This case expression examines its operand, l{nat → nat; nat} · λ (x : nat)x, and in the left
case binds its wrapped value to x1 in x1(z). In the right case it would bind the wrapped value
to x2 in x2.

There is a special variety of case, one with no branches, which works on values of type void:

case e {} [where e : void]

But wait! We just said there were no values of type void, so why do we even need this? Well,
even though there are no such values, we can still write functions that take in arguments of
type void:

λ (x : void) case x {}

For us to be able to construct this function and have it satisfy type safety, we need some
construct that eliminates the void type even if nothing introduces it.

Note: The current editions of PFPL have another construct, abort(e), which serves the same
purpose as this empty case expression. According to the author of the textbook, that notation
was a historical choice that mischaracterizes the construct, since it does not actually “abort”
any computation.

One useful flavor of sum types is booleans:

bool , unit + unit

true , l · ()
false , r · ()

2.1 Statics

Γ ` e : void
Γ ` case e {} : τ

Γ ` e : τ1
Γ ` l{τ1; τ2} · e : τ1 + τ2

Γ ` e : τ2
Γ ` r{τ1; τ2} · e : τ1 + τ2

Γ ` e : τ1 + τ2 Γ, x1 : τ1 ` e1 : τ Γ, x2 : τ2 ` e2 : τ

Γ ` case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} : τ
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2.2 Dynamics 3 RECURSOR

2.2 Dynamics

Like before, this is an eager dynamics, so think about how the rules would change for a lazy
dynamics!

e 7−→ e′

case e {} 7−→ case e′ {}

e val
l · e val

e val
r · e val

e 7−→ e′

l · e 7−→ l · e′
e 7−→ e′

r · e 7−→ r · e′

e 7−→ e′

case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} 7−→ case e′ {l · x1 ↪→ e1 | r · x2 ↪→ e2}

e val
case l · e {l · x1 ↪→ e1 | r · x2 ↪→ e2} 7−→ [e/x1]e1

e val
case r · e {l · x1 ↪→ e1 | r · x2 ↪→ e2} 7−→ [e/x2]e2

3 Recursor

When we were first introduced to System T, we questioned why it was necessary to have two
binding sites in the primitive recursor. Now that we have product types, we can roll both fields
into one product, which we do with the new recursor:

iter{z ↪→ e0 | s(x) ↪→ e1}(e)

We do not lose any expressive power with this construction, as we now only need to accumulate
a pair whose first element is the predecessor (a number), and whose second element is the
accumulated computation. In fact, we can build the old recursor directly:

rec{z ↪→ e0 | s(x) with y ↪→ e1}(e) , iter{z ↪→ (z, e0) | s(x1) ↪→ (s(x1·l), [x1·l, x1·r/x, y]e1)}(e)·r

You should check that this construction is correct, which would mean that we can compute all
the things we could with standard System T.
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4 Type Isomorphisms

The fact that we have sum and product types brings up the question: just how similar are these
types to addition and multiplication in arithmetic? One similarity that we can easily see is that
simple equations in arithmetic also hold for types. For example, in arithmetic, we can say that
1 + 1 = 2. For types, we have an equivalent notion: 1 + 1 ∼= 2. That is, 1 + 1 is isomorphic
to 2.

Two types are isomorphic precisely when they contain exactly the same information. For
example, any value with type 1 × τ has no more information than a value of type τ . More
formally, we say that τ1 ∼= τ2 iff there are two functions f : τ1 → τ2 and g : τ2 → τ1 that are
inverses of each other (such that f(g(x)) = x and g(f(x)) = x).

We would like some ordinary properties of arithmetic to hold for sums and products. For
example, intuitively, the following should hold:

τ × 0 ∼= 0

τ × 1 ∼= τ

τ1 + τ2 ∼= τ2 + τ1

We can show that these properties hold by writing some functions:

τ × 0 ∼= 0:

f , λ (x : τ × 0)x · r
g , λ (x : 0) case x {}

τ × 1 ∼= τ :

f , λ (x : τ × 1)x · l
g , λ (x : τ) 〈x, ()〉

τ1 + τ2 ∼= τ2 + τ1:

f , λ (x : τ1 + τ2) case x {l · x ↪→ r · x | r · x ↪→ l · x}
g , λ (x : τ2 + τ1) case x {l · x ↪→ r · x | r · x ↪→ l · x}

As an exercise, show that each f and g are inverses. The first one is a bit tricky: the key insight
is to realize that there are no values of types τ + 0 or 0.
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5 Generic Programming

A type operator is a type abstracted with a variable whose occurrences mark the spots in the
type where a transformation will be applied. It is an abstractor t.τ such that t type ` τ type.
We will be looking at polynomial type operators in particular. These are simply type operators
that are constructed from unit, void, and sums and products.

For example,
t.unit + (bool× t)

is a polynomial type operator.

Type operators give us the ability to take a term and transform every subterm of a particular
type τ into a new subterm of some type τ ′. The operation that does this is called map. For
example, say we have the following expression

〈l · (), r · ()〉 : bool× bool

and we want to flip all the booleans in it: turn false (r · ()) to true (l · ()) and vice versa.
To do this, we first create a type operator that marks all the spots in the type where there are
booleans:

t.t× t

and then apply map with an transformation that flips booleans. This will apply that transfor-
mation at every t in the type operator, correctly flipping all the booleans:

map{t.t× t}(x.case x {l · ↪→ r · () | r · ↪→ l · ()})(e) 7−→ 〈r · (), l · ()〉

More formally, the dynamics and statics of map are given below:

5.1 Statics

t.τ poly Γ, x : ρ ` e′ : ρ′ Γ ` e : [ρ/t]τ

Γ ` map{t.τ}(x.e′)(e) : [ρ′/t]τ

5.2 Dynamics

map{t.t}(x.e′)(e) 7−→ [e/x]e′

map{t.unit}(x.e′)(e) 7−→ e

map{t.τ1 × τ2}(x.e′)(e) 7−→ 〈map{t.τ1}(x.e′)(e · l), map{t.τ2}(x.e′)(e · r)〉

map{t.void}(x.e′)(e) 7−→ case e {}

map{t.τ1 + τ2}(x.e′)(e) 7−→ case e {l · x ↪→ l · map{t.τ1}(x.e′)(x) | r · y ↪→ r · map{t.τ2}(x.e′)(y)}
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The dynamics for map specify based on the structure of the type operator which operations
should be done on the input term e, with the result being that certain components of e get
replaced according to e′. In the first rule, τ is simply t, meaning that the entirety of e gets
replaced according to e′, and we just substitute it in. In the second rule, the type operator has
no instances of t, meaning that we must just return e untransformed. The third and fifth rules
split e into components based on the product and sum rules, while the fourth rule expresses a
paradoxical case with void. To understand the void rule, think about what it would mean for
e to satisfy the type operator t.void, and what we could do to it at evaluation.

At this point you may be wondering: what is the purpose of generic programming? If we want
to apply a transformation to an expression, why don’t we just write code that does that? Why
use map? We’ll find out in lecture tomorrow that generic programming allows us to create
powerful new types called inductive types. The essence is that given a specification of some
type τ , we can automatically transform the type, so that our language’s dynamics do not need
to change to reflect new data structures.
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