
Recitation 3:
Gödel’s System T

15-312: Foundations of Programming Languages

Jeanne Luning Prak, Charles Yuan

January 31, 2018

1 Syntax

We now define and explore a language called System T. System T extends E with function
types and replaces E’s primitive arithmetic operations with a more general operation on the
natural numbers: primitive recursion. The syntax of System T is given by the following
grammar:

Typ τ ::= nat number
τ1 → τ2 function

Exp e ::= x variable
z zero
s(e) successor
rec{z ↪→ e0 | s(x) with y ↪→ e1}(e) recursion
λ (x : τ) e abstraction
e1(e2) application

Surprisingly, despite the loss of the arithmetic operations, T is capable of expressing every
numeric computation in E and much more.

2 Abstraction and Application

Abstraction and application behave much as we would intuitively expect. An abstraction (func-
tion) binds a variable of type τ in e1, and an application substitutes an expression e2 : τ for that
bound variable. Abstractions are first-class expressions: they have a type and can be passed to
and returned from other abstractions. Because of this, System T is a language with higher-order
functions.

The statics and dynamics for abstraction and application are given below.

2.1 Statics

Γ, x : τ1 ` e2 : τ2
Γ ` λ (x : τ1) e2 : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
Γ ` e1(e2) : τ2

1

2.2 Dynamics 4 RECURSION

2.2 Dynamics

These dynamics rules are for the eager form of System T. All arguments are evaluated before
being substituted into the body of a function. For a lazy dynamics, the e2 7−→ e′2 rule would
be left out, along with the requirement on the last rule that e2 be a value. Note the first rule,
which states that functions are values.1

λ (x : τ) e val

e1 7−→ e′1
e1(e2) 7−→ e′1(e2)

e1 val e2 7−→ e′2
e1(e2) 7−→ e1(e

′
2)

e2 val

(λ (x : τ) e)(e2) 7−→ [e2/x]e

3 Natural Numbers

In System T, the natural numbers are defined as either zero, or the successor of a natural
number. In addition to this definition, we also now have a single operation that works on
naturals: recursion. The statics and dynamics of nats is given below, while recursion is discussed
in the next section.

3.1 Statics

Γ ` z : nat
Γ ` e : nat

Γ ` s(e) : nat

3.2 Dynamics

For a lazy form of System T, the requirement e val would be removed.

z val
e val

s(e) val

4 Recursion

Now let’s consider the recursion operation for System T:

rec{z ↪→ e0 | s(x) with y ↪→ e1}(e)

This operation cases on the value of e (either z or s(e′)). If e is z then the expression evaluates
to e0, the base case. If e is s(e′) for some natural number e′, then it recurs on e′, binding the
result of the recursion to y and e′ to x for use in e1.

1As they say in 15-150.

2
.

4.1 Statics 4 RECURSION

4.1 Statics

Γ ` e : nat Γ ` e0 : τ Γ, x : nat, y : τ ` e1 : τ

Γ ` rec{z ↪→ e0 | s(x) with y ↪→ e1}(e) : τ

4.2 Dynamics

e 7−→ e′

rec{z ↪→ e0 | s(x) with y ↪→ e1}(e) 7−→ rec{z ↪→ e0 | s(x) with y ↪→ e1}(e′)

rec{z ↪→ e0 | s(x) with y ↪→ e1}(z) 7−→ e0

s(e) val

rec{z ↪→ e0 | s(x) with y ↪→ e1}(s(e)) 7−→ [e, rec{z ↪→ e0 | s(x) with y ↪→ e1}(e)/x, y]e1

4.3 Examples for Recursion

4.3.1 Doubling

Understanding the recursor can be tricky, so let’s go through an example. We’ll write a function
that doubles a number using the recursor. To do this, let’s consider how we would implement
doubling in Standard ML given the following datatype for natural numbers:

datatype nat = z | s of nat

We can double a number by doubling its predecessor and then taking the successor of that
number twice:

fun double z = z

| double (s x) = s (s (double x))

Let’s rewrite this so that it matches the format of the recursor, with the predecessor of e bound
to x and the result of the recursion bound to y:

fun double e =

case e of

z => z

| s x => let val y = double x in s (s y) end

This makes it easier to now implement this using the recursor:

λ (e : nat) rec{z ↪→ z | s(x) with y ↪→ s(s(y))}(e)

As an exercise to make sure you understand the recursor, try to implement addition in the same
manner.

4.3.2 Ackermann

System T is notable for its only explicit recursion operator being primitive recursion. How-
ever, its higher-order functions means that it is capable of computing non-primitive-recursive
functions, like the well-known Ackermann function A(m,n), defined as follows:

A(0, n) = n+ 1

A(m+ 1, 0) = A(m, 1)

A(m+ 1, n+ 1) = A(m,A(m+ 1, n))

3
.

4.3 Examples for Recursion 4 RECURSION

Ackermann is not primitive recursive since with a given recursive call, it is possible for n to
increase. This is incompatible with the recursor construct, which requires its argument be
deconstructed at every step. However, consider currying A(m,n):

A(0)(n) = s(n)

A(s(m))(0) = A(m)(1)

A(s(m))(s(n)) = A(m)(A(s(m))(n))

If we treat A(s(m)) as the function in question, we observe that whenever it is called recursively,
its argument n decreases in value. We arrive at an insight: A(s(m)) is a primitive recursive
function in as of itself, and we should try writing it as a recursor.

However, there is one hiccup in computing A(s(m)): the intermediate value we are collecting
is not a number, but a function which applies A(m) every step. Fortunately, System T allows
us to write this. Consider the definitions:

id : nat→ nat

id , λ (x : nat)x

comp : (nat→ nat)→ (nat→ nat)→ nat→ nat

comp , λ (f : nat→ nat)λ (g : nat→ nat)λ (x : nat) f(g(x))

iter : (nat→ nat)→ nat→ nat→ nat

iter , λ (f : nat→ nat)λ (n : nat) rec{z ↪→ id | s(x) with y ↪→ comp(f)(y)}(n)

What does iter do? Given a function f and a number n, it computes the n-th iterate of f , fn.
That’s exactly what we need!

Rearranging, we have:

A(0)(n) = s(n)

A(s(m))(n) = iter(A(m))(n)(A(m)(1))

Now we can move up one level to express A as a recursor, and write the Ackermann function
in T (using a succ function that just takes the successor of a nat):

succ : nat→ nat

succ , λ (n : nat) s(n)

ack : nat→ nat→ nat

ack , λ (m : nat) rec{z ↪→ succ | s(x) with y ↪→ λ (n : nat) iter(y)(n)(y(s(z)))}(m)

This is a constructive proof that despite not being primitive recursive, Ackermann is higher-order
primitive recursive. System T allows us to compute a large set of functions like Ackermann,
though all expressions in T provably terminate (cannot diverge). What does that mean from a
computability theory perspective?

4
.

