
Recitation 2:
Binding, Semantics, and Safety
15-312: Foundations of Programming Languages

Charles Yuan, Jeanne Luning Prak

January 24, 2018

1 Abstract Binding Trees

The abstract syntax trees we saw previously contained the concept of variables, but not the
ability to give variables meaning. To do that, we need the concept of binding, which is provided
by the abstract binding tree, or abt. Like ast’s, abt’s are characterized by variables and
operators, but operators have notion of binding.

In an abt, every operator may specify a number of variables that are bound within the scope of
the operator. Operators accordingly have arities that reflect the number and sorts of variables
they bind. For example, an operator let of arity

(Exp,Exp.Exp)Exp

takes a first abt argument that has no bound variables of sort Exp and a second argument
with one bound variable of sort Exp and which is also of sort Exp. The notation x.e is used to
indicate a binder, or an expression coupled with a named bound variable. We might use such
an operator to represent a let-expression in ML:

let(1, x.x+ 2) for let x = 1 in x+ 2 end

Inside an operator that binds some variable x, x is considered bound, and a variable that is
not inside a binding of its own name is considered free. The distinction between bound and
free variables is significant when we consider the semantics of substitution.

Binders themselves are not valid abt’s but for convenience we often use notation that pretends
they are.

1.1 Substitution

Substitution in a system without bindings involves simply replacing instances of the specified
variable with instances of the substitute in a structural manner:

[e/x]A(x, y,B(z, x)) ↪→ A(e, y,B(z, e))

In a system with bindings, we now limit ourselves to only substituting for free instances. Bound
variables are ignored in substitution until they are later unbound:

[e/x]A(x, y, x.B(z, x)) ↪→ A(e, y, x.B(z, x))

1

1.2 α-Equivalence 2 STATICS

However, this rule is not enough. Consider substitution on this ML expression:

[x/y] fn x⇒ y ↪→ fn x⇒ x

Here, y was free and we attempt to substitute, but directly substituting has allowed us to turn
a constant function into the identity function, which is absurd. This situation is known as
unintentional capture of the variable y by the binder. We must use a more restrictive rule
when it comes to binders:

[e′/x]y.e substitutes e′ for x in e only if x 6= y and y is not free in e′

The requirement that y not be free in e′ is known as freshness of y. We may solve the freshness
requirement in two ways: one is through α-conversion, and another is the use of de Bruijn
indices, which you will see on Assignment 1.

1.2 α-Equivalence

α-equivalence is an equivalence relation on abt’s that allows free exchange of the choice of
bound variable inside a binder. Namely:

x.e ∼=α y.([y/x]e)

Using α-equivalence, we may convert an expression in which some variable is not fresh to an
equivalent expression in which it is fresh, and proceed with substitution.

In this course we will often speak of expressions that are α-equivalent as equal. Such conversions
will often be done implicitly.

2 Statics

The statics of a language is the system of rules that govern the meaning of the language at
expression-level before the expression is evaluated (updated) according to a different set of rules
known as the dynamics. It usually consists of typing judgments that determine whether an
expression is well-formed.

Given a language, we introduce two sorts, Typ and Exp, corresponding to the types and expres-
sions of the language respectively. When parsing of the program completes, we will have an abt
that can be decomposed into subtrees falling into these sorts.

Example of the syntax of a language:

Typ τ ::= num number
Exp e ::= x variable

num[n] literal
plus(e1; e2) addition
times(e1; e2) multiplication
let(e1;x.e2) definition

We then define a judgment, typing, which relates an expression e with its type τ using the
typing context Γ:

Γ ` e : τ

2
.

3 DYNAMICS

Example of our language’s typing judgment definition:

Γ, x : τ ` x : τ

Γ ` num[n] : num

Γ ` e1 : num Γ ` e2 : num

Γ ` plus(e1; e2) : num

Γ ` e1 : num Γ ` e2 : num

Γ ` times(e1; e2) : num

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2
Γ ` let(e1;x.e2) : τ2

The rules state the following:

• Variables are given types by the context.

• Numeric literals are of type num.

• Sums and products of two expressions of type num are of type num.

• Given that e1 has some type τ1, if substituting e1 for x with type τ1 in e2 would give it
type τ2, then let x = e1 in e2 has type τ2.

A unicity of typing theorem ensures the consistency of a type system. It says:

For all Γ and e, there is at most one τ such that Γ ` e : τ .

3 Dynamics

The dynamics of a language describe how expressions evaluate. In this class we mainly focus
on structural dynamics, which is given by a system of transitions from one expression to
another, until final states called values are reached.

The judgment e val states that e is a value. The judgment e 7→ e′ states that expression e steps
to expression e′.

Example of our language’s value and step judgment definitions:

num[n] val

n1 + n2 = n

plus(num[n1]; num[n2]) 7→ num[n]

e1 7→ e′1
plus(e1; e2) 7→ plus(e′1; e2)

e1 val e2 7→ e′2
plus(e1; e2) 7→ plus(e1; e

′
2)

n1 × n2 = n

times(num[n1]; num[n2]) 7→ num[n]

e1 7→ e′1
times(e1; e2) 7→ times(e′1; e2)

e1 val e2 7→ e′2
times(e1; e2) 7→ times(e1; e

′
2)

3
.

4 TYPE SAFETY

e1 7→ e′1
let(e1;x.e2) 7→ let(e′1;x.e2)

e1 val

let(e1;x.e2) 7→ [e1/x]e2

The rules state the following:

• Numeric literals are values.

• Sums and products evaluate their first argument, then their second, then evaluate to the
arithmetic result. Note that this constitutes an eager, left-to-right dynamics, meaning
that arguments are evaluated immediately from left to right. Most languages we study in
this course will share this property.

• Let-expressions evaluate their substitute argument, then perform substitution to yield a
new expression. This is eager as before, though there is discussion in Section 5.2 of PFPL
as to how it might be lazy instead.

Note what the dynamics does not do: account for free variables, or likewise ill-typed expressions.
The intention is for the statics check to have already occurred, and for dynamics to purely
describe evaluation. Here we also did not account for runtime errors, but you will do so in
Assignment 1.

A canonical forms lemma says that if we know the type of an expression, we already know
what the values of the expression look like. It looks like this:

If e val, then [for each type τ in the language,]

if Γ ` e : τ then e = V [where V is the form of the value].

Example of our language’s canonical forms lemma:

If e val, then if Γ ` e : num, then e = num[n] for some n.

Not all languages have canonical forms, as it depends on the definition of values.

There are two other useful notions for a dynamics: finality, which says that a well-typed expres-
sion is either a value or can step (never both); and determinacy, which says that an expression
always steps to a unique expression if it can step at all. Finality is usually assumed to hold in
this course, and so is determinacy (until much later in the course!).

4 Type Safety

A progress theorem guarantees our language does not get stuck during execution:

If · ` e : τ , then either e val, or there exists e′ such that e 7→ e′.

A preservation theorem guarantees our language never violates the type of an expression:

If · ` e : τ and e 7→ e′, then · ` e′ : τ .

Notice that the progress and preservation theorems only apply to typing judgments where the
context is empty. This means that they only applies to closed terms: there can be no free
variables in e.

Together, progress and preservation constitute the central property of a language: type safety.

Progress and preservation can be proven about a language using rule induction.

4
.

4.1 Progress Proof 4 TYPE SAFETY

4.1 Progress Proof

A proof of progress proceeds by rule induction on the typing derivation. We can specialize the
principle of rule induction for a proof of progress on the example language like so:

Let P(e) be the property that either e val or there exists an e′ such that e 7→ e′.

To prove that if · ` e : τ , then either e val, or there exists e′ such that e 7→ e′, it is
sufficient to prove the following:

• P(num[n])

• If P(e1), P(e2), · ` e1 : num, and · ` e2 : num, then P(plus(e1; e2))

• If P(e1), P(e2), · ` e1 : num, and · ` e2 : num, then P(times(e1; e2))

• If P(e1), · ` e1 : τ1, and x : τ1 ` e2 : τ2, then P(let(e1;x.e2))

The proof itself is left as an exercise.

4.2 Preservation Proof

A proof of preservation proceeds by rule induction on the transition judgment, because it hinges
on examining all possible transitions from a given expression. A proof of preservation for the
example language is given below.

In the below proof, we make use of the following lemmas:

1. Inversion on Typing:

• If Γ ` plus(e1; e2) : τ then τ = num, Γ ` e1 : num, and Γ ` e2 : num.

• If Γ ` times(e1; e2) : τ then τ = num, Γ ` e1 : num, and Γ ` e2 : num.

• If Γ ` let(e1;x.e2) : τ then Γ ` e1 : τ1 s.t. Γ, x : τ1 ` e2 : τ .

2. Substitution Lemma: If Γ, x : τ ` e′ : τ ′ and Γ ` e : τ then Γ ` [e/x]e′ : τ ′.

Proof:

Let P(e, e′) be the property that if · ` e : τ , then · ` e′ : τ . Proceed by rule induction
on judgment e 7→ e′.

• Case: If n1 + n2 = n, then P(plus(num[n1]; num[n2]), num[n])

I.H.: n1 + n2 = n
Assume · ` plus(num[n1]; num[n2]) : τ
WTS: · ` num[n] : τ

· ` plus(num[n1]; num[n2]) : num [Inversion on Typing]

· ` num[n] : num [Typing rule for num]

· ` num[n] : τ [Take τ = num]

• Case: If P(e1, e
′
1) and e1 7→ e′1, then P(plus(e1; e2), plus(e′1; e2))

I.H.: P(e1, e
′
1) and e1 7→ e′1

Assume · ` plus(e1; e2) : τ

5
.

4.2 Preservation Proof 4 TYPE SAFETY

WTS: · ` plus(e′1; e2) : τ

· ` plus(e1; e2) : num [Inversion on Typing]

· ` e1 : num [Inversion on Typing]

· ` e′1 : num [I.H.]

· ` e2 : num [Inversion on Typing]

· ` plus(e′1; e2) : num [Typing rule for plus]

· ` plus(e′1; e2) : τ [Take τ = num]

• Case: If P(e2, e
′
2) and e1 val and e2 7→ e′2, then P(plus(e1; e2), plus(e1; e

′
2))

I.H.: P(e2, e
′
2) and e1 val and e2 7→ e′2

Assume · ` plus(e1; e2) : τ
WTS: · ` plus(e1; e

′
2) : τ

· ` plus(e1; e2) : num [Inversion on Typing]

· ` e2 : num [Inversion on Typing]

· ` e′2 : num [I.H.]

· ` e1 : num [Inversion on Typing]

· ` plus(e1; e
′
2) : num [Typing rule for plus]

· ` plus(e1; e
′
2) : τ [Take τ = num]

• Case: If n1 × n2 = n, then P(times(num[n1]; num[n2]), num[n])

[Identical to the proof for plus. Left as exercise.]

• Case: If P(e1, e
′
1) and e1 7→ e′1, then P(times(e1; e2), times(e′1; e2))

[Identical to the proof for plus. Left as exercise.]

• Case: If P(e2, e
′
2) and e1 val and e2 7→ e′2, then P(times(e1; e2), times(e1; e

′
2))

[Identical to the proof for plus. Left as exercise.]

• Case: If P(e1, e
′
1) and e1 7→ e′1, then P(let(e1;x.e2), let(e′1;x.e2))

I.H.: P(e1, e
′
1) and e1 7→ e′1

Assume · ` let(e1;x.e2) : τ
WTS: · ` let(e′1;x.e2) : τ

· ` e1 : τ1 s.t. x : τ1 ` e2 : τ [Inversion on Typing]

· ` e′1 : τ1 s.t. x : τ1 ` e2 : τ [I.H.]

· ` let(e′1;x.e2) : τ [Typing rule for let]

• Case: If e1 val, then P(let(e1;x.e2), [e1/x]e2)

I.H.: e1 val
Assume · ` let(e1;x.e2) : τ
WTS: · ` [e1/x]e2 : τ

· ` e1 : τ1 s.t. x : τ1 ` e2 : τ [Inversion on Typing]

· ` [e1/x]e2 : τ [Substitution Lemma]

This completes the proof of preservation for the example language.

�

6
.

