
Recitation 14:
Dynamic Classification

15-312: Foundations of Programming Languages

Jeanne Luning Prak

April 25th, 2018

1 Motivation

In Recitation 9, we briefly talked about how all exception values must have the same type, since
the handler cannot know where a raised exception comes from. We went through several possible
types for exception values, including nat (error codes) and string (error messages). However,
each has its drawbacks. Error numbers must be agreed upon ahead of time to be useful, and
error messages are useful to a human debugging, but not an exception handler in your code. We
also considered a sum type with every type we plan to use as an exception for our program, but
this is very anti-modular.

A better approach is to have a single type that can be extended with new classes for different
types. Symbols1 generated at runtime are used to tag values of various types, and all tagged
values have type clsfd (classified)2. This is, in fact, what Standard ML does for its exception
type: exn can be extended with new dynamic classes using the exception keyword.

exception Message of string

creates a new symbol Message to tag values of type string to create an value of type exn. For
this reason, we say that the exn type is an extensible type.

In this recitation, we’ll formalize this clsfd type

2 Clsfd

We add three new operators that introduce and eliminate values of type clsfd.

Sort Abstract Syntax Concrete Syntax

Typ τ ::= clsfd clsfd
Exp e ::= in[a](e) a · e

isin[a](e; x.e1; e2) match e as a · x ↪→ e1 ow ↪→ e2

1To get a good understanding of symbols, take a look at Chapter 31 of PFPL.
2You may remember clsfd from Concurrent Algol.

1

4 DYNAMICS

3 Statics

To create a value of type clsfd, we use a symbol a associated with type τ to classify a value e
of type τ in in[a](e). We can also check if a value of type clsfd is classified with a particular
symbol using isin, binding the value that was classified to x and evaluating e1 if it is, and
evaluating e2 otherwise.

To formally define the statics, we use a symbol signature Σ which contains the symbols in
scope and their associated types. As we saw in Modernized Algol, this is distinct from a variable
context, as symbols are not given meaning by substitution, but instead exist as their own atomic
units.

Γ `Σ,a∼τ e : τ

Γ `Σ,a∼τ in[a](e) : clsfd
Γ `Σ,a∼τ e : clsfd Γ, x : τ `Σ,a∼τ e1 : τ ′ Γ `Σ,a∼τ e2 : τ ′

Γ `Σ,a∼τ isin[a](e; x.e1; e2) : τ ′

4 Dynamics

We use ν Σ to define the dynamics, where Σ is the symbols currently in scope3. This gives
us a scope-free dynamics in which a symbol, once created, remains in scope for every future
expression. We never remove symbols from Σ; we only add them.

e valΣ

in[a](e) valΣ

ν Σ{e} 7−→ ν Σ′{e′}
ν Σ{in[a](e)} 7−→ ν Σ′{in[a](e′)}

e valΣ

ν Σ{isin[a](in[a](e); x.e1; e2)} 7−→ ν Σ{[e/x]e1}

e′ valΣ (a 6= a′)

ν Σ{isin[a](in[a′](e′); x.e1; e2)} 7−→ ν Σ{e2}

ν Σ{e} 7−→ ν Σ′{e′}
ν Σ{isin[a](e; x.e1; e2)} 7−→ ν Σ{isin[a](e′; x.e1; e2)}

It’s worth noting that these rules look somewhat similar to the rules for in and case for sum
types. However, for a sum type, all of the labels are known statically and we can check if the
case is exhaustive. For a value of type clsfd, all of the symbols that it could be tagged with
are not known, and, in fact, cannot be known, since more can be dynamically generated. This
means that only an expression that has a particular symbol in scope can match on it. This gives
dynamically classified values a sort of confidentiality4 and integrity, as only someone with the
symbol can tag a value with it and only someone with the symbol can retrieve the value tagged
with that symbol.

3The ν is just a symbol; it has no meaning.
4Which gives us an excellent pun on the word “classified”

2
.

5 EXAMPLES

5 Examples

5.1 Exceptions in SML

Let’s look at an example of exceptions in Standard ML.

exception FoundZero of int

fun foo (x : int) = if x = 0 then raise FoundZero 0 else x

val _ = foo 0 handle FoundZero x => x

We can translate this into XPCF5 with clsfd.

new{int}(foundZero.
try(

(fn (x : int) ifz(x; raise(in[foundZero](z)); _.x))(z);
ex.isin[foundZero](ex; n.n; raise(ex))

)
)

Notice that a handle translates to a try and an isin where the ow case of the isin re-raises the
exception. This is consistent with the behavior of exceptions in Standard ML: if an exception is
not handled by a handler, it remains raised.

5.2 Channels in CA

We can have a form of “selective” communication using broadcast communication if we broadcast
a clsfd value with a channel symbol, so that only processes with that channel in scope can match
against it. Say Alice wants to send the number 8128 to Bob without Eve knowing what was
sent. Alice can do this by broadcasting along a channel that Eve does not have access to:

new[nat](b.
run(msg ← acc; (* Eve *)

match msg with
b n => ret n
ow => _ ← emit(msg);

ret 0)
⊗ new[nat](a.run(emit(a(8128)) (* Alice *)

⊗ run(msg ← acc; (* Bob *)
match msg with

a n => ret n
ow => _ ← emit(msg);

ret 0)))

We use the concrete syntax here for readability. Notice that channel a is not in scope for the first
process, so it would have no hope of decoding the message (only of stopping its transmission).

5If you remember, this PCF with exceptions

3
.

