
Recitation 11:
Cost, Parallelism, and Modal Separation

15-312: Foundations of Programming Languages

Jeanne Luning Prak

April 4th, 2018

1 Motivation

When defining a cost semantics, as we did in lecture, we would like to be able to say that
evaluating a value has 0 cost. After all, it takes 0 steps to turn a value into a value. However,
consider how many steps your code actually takes to evaluate a value in the dynamics you’ve
implemented this semester. For example, if we’re evaluating a tuple that is already a value, we
must go through the tuple and check that each element of that tuple is a value. This doesn’t
take 0 steps; this takes as many steps as there are elements in the tuple! Our cost semantics
would have to take this into account:

e1 ⇓n v1 e2 ⇓m v2

〈e1, e2〉 ⇓2⊕(n⊗m) 〈v1, v2〉

This means that our cost semantics does not actually match the number of steps it takes to step
to a value in our transition semantics; there is extra overhead for checking that an expression
is actually a value. This becomes an even bigger problem when we have function applications,
where we can substitute an expression for a variable in multiple places. Then, in each of those
places, we must check that that expression is, in fact, a value.

We would like to be able to avoid this check altogether, so that our evaluational cost semantics
match up with our transition semantics. We would like for our cost semantics to say:

e1 ⇓n v1 e2 ⇓m v2

〈e1, e2〉 ⇓n⊗m 〈v1, v2〉

and so if both e1 and e2 are already values, then it takes 0 steps to evaluate them, and so
evaluating the tuple takes 0 steps.

To do this, we define a new language, Modal Parallel PCF, or MPPCF1, which has a different
sort for expressions and values. That way, it is not necessary to check if an expression is a
value: you already know it isn’t! In MPPCF, expressions return values rather than stepping
to values, to preserve the distinction between the two.

This is called a modal separation between expressions and values. As we will see in lecture
on Thursday, another common use of modal separation is to separate commands, which have

1Unlike most languages in this class, MPPCF is not in PFPL, so you should refer to the Homework 5 handout
or to these recitation notes for its definition.

1

2 MPPCF

effects, from expressions, which do not. This is the idea behind Modernized Algol, which we will
be studying, but also the functional language Haskell, which separates effects using monads.

2 MPPCF

The language MPPCF (Modal Parallel PCF) has a modal distinction between expressions,
which must incur cost to be evaluated, and values, which are evaluated and incur no cost.

2.1 Syntax

The grammar for MPPCF is given below. This grammar is quite different from other ones we’ve
seen so far, as there is a different sort for values and expressions, whereas usually we have a
single sort for terms. This distinction is explained below the chart.

τ ::= nat naturals
| τ1 → τ2 partial functions
| 〈τ1 × . . .× τn〉 eager products
| [τ1 & . . . & τn] lazy products

v ::= x variables
| n numeric literals
| fn (x : τ) ⇒ e functions
| 〈v1, . . . , vn〉 eager tuples
| [e1 || . . . || en] lazy tuples

e ::= ret(v) value
| v1(v2) application
| s(v) successor
| ifz v {z ⇒ e0 | s(x) ⇒ e1} zero test
| fixx : τ is e fixed point
| split v as x1, . . . , xn in e eager tuple unpack
| par x = v in e parallel tuple evaluation

The most prominent feature of MPPCF is its modal separation between expressions and val-
ues. Variables, functions, numbers, and tuples are values: they cannot contain unevaluated
computations inside of them (except for lazy tuples). The rest of the operators are expressions,
and cannot be contained in values. However, this brings up a concern: if expressions and values
must be separate how do we evaluate expressions?. For example, MPPCF has a function

fn (x : τ) ⇒ e

whose argument is a value and whose body is an expression. We would like to be able to define
evaluation in the same way as always:

(fn (x : τ) ⇒ e)(e1) 7−→ [e1/x]e

But we can’t, since we can’t substitute an expression for a value!

To deal with this, we have three operators that mediate between expressions and values:

2
.

2.2 Statics 2 MPPCF

• Lazy tuples, [e1 || . . . || en] which are values that contain expressions.

• Returns, ret(v), which are expressions that contain values.

• Parallel let, par x = v in e, which evaluates a lazy tuple in parallel until it contains only
returns, unwraps the values from the returns, and puts them into an eager tuple for use
in another expression.

If you know about monads, you may notice that ret is a return and par is a parallel version of
bind.

2.2 Statics

Because MPPCF has a modal separation of values and expressions, we now have two judgments
for typing: v : τ , which states that a value v has type τ and e ∼·· τ , which states that e is an
expression, or a computation, of type τ .

2.2.1 Values

Γ, x : τ ` x : τ

Γ, x : τ ` e ∼·· τ ′
Γ ` lam{τ}(x.e) : τ → τ ′

Γ ` num[n] : nat

Γ ` v1 : τ1 . . . Γ ` vn : τn
Γ ` 〈v1, . . . , vn〉 : 〈τ1 × . . .× τn〉

Γ ` e1 ∼·· τ1 . . . Γ ` en ∼·· τn
Γ ` [e1 || . . . || en] : [τ1 & . . . & τn]

Here, we have different types for tuples that contain values and tuples that contain expressions.

2.2.2 Expressions

Γ ` v : τ
Γ ` ret(v) ∼·· τ

Γ ` v1 : τ → τ ′ Γ ` v2 : τ

Γ ` ap(v1; v2) ∼·· τ ′

Γ ` v : nat
Γ ` s(v) ∼·· nat

Γ ` v : nat Γ ` e1 ∼·· τ Γ, x : nat ` e2 ∼·· τ
Γ ` ifz{e1;x.e2}(v) ∼·· τ

Γ, x : [τ] ` e ∼·· τ
Γ ` fix{τ}(x.e) ∼·· τ

Γ ` v : 〈τ1 × . . .× τn〉 Γ, x1 : τ1, . . . , xn : τn ` e ∼·· τ
Γ ` split[n](v;x1, . . . , xn.e) ∼·· τ

Γ ` v : [τ1 & . . . & τn] Γ, x : 〈τ1 × . . .× τn〉 ` e ∼·· τ
Γ ` par(v;x.e) ∼·· τ

3
.

2.3 Dynamics 3 EXAMPLES

2.3 Dynamics

Notice that here we use an evaluation dynamics annotated with the cost graph for each ex-
pression. This allows us to clearly express the main advantage of MPPCF: accurate cost
semantics.

ret(v) ⇓1 v
[v/x]e ⇓c v′

ap((lam{τ}(x.e)); v) ⇓c⊕ 1 v′

s(num[n]) ⇓1 num[n+ 1]

e1 ⇓c v
ifz{e1;x.e2}(num[0]) ⇓c⊕ 1 v

n 6= 0 [num[n− 1]/x]e2 ⇓c v
ifz{e1;x.e2}(num[n]) ⇓c⊕ 1 v

[[fix{τ}(x.e)]/x]e ⇓c v
fix{τ}(x.e) ⇓c⊕ 1 v

[v1, . . . , vn/x1, . . . , xn]e ⇓c v
split[n](〈v1, . . . , vn〉;x1, . . . , xn.e) ⇓c⊕ 1 v

e1 ⇓c1 v1 . . . en ⇓cn vn [〈v1, . . . , vn〉/x]e ⇓c v
par([e1 || . . . || en];x.e) ⇓(c1⊗ ...⊗ cn)⊕ c⊕ 1 v

3 Examples

Below are some examples of programs in PCF (extended with products), the equivalent program
in MPPCF, and what the program is meant to do. As an exercise, try covering up the last
column and implementing the MPPCF functions on your own before looking at the translation.

Meaning PCF MPPCF

Identity Function fn (x : nat) ⇒ x fn (x : nat) ⇒ ret(x)

Two s(s(z)) 2 or par v = [s(0)] in s(v)

The identity applied to s(z) (fn (x : nat) ⇒ x)(s(z)) par v = [s(0)] in split v as x1 in

(fn (x : nat) ⇒ ret(x))(x1)

First element of a tuple e.l par v = [e] in split v as x1, x2 in

ret(x1)

If e > 0 then 1 else 0 ifz e {z ⇒ z | s(x) ⇒ s(z)} par v = [e] in split v as x1 in

ifz v {z ⇒ ret(0) | s(x) ⇒ ret(1)}

4
.

