
Recitation 10:
Continuations and Parallelism
15-312: Foundations of Programming Languages

Jeanne Luning Prak

March 28, 2018

1 Continuations

Last week, we saw how we can use control stacks to describe exception raising and handling. In
particular, control stacks allowed us to implement non-local jumps, aborting the evaluation of
the current expression and moving to a handler somewhere else in the program. This week, we
discuss another use of control stacks: continuations. Continuations allow us to save the current
control stack as a value, and to reinstate this control stack at any point later in the program.
This allows us access to unlimited, safe “time travel.” We can go back to a previous evaluation
step of a program whenever we choose.

To illustrate this, consider a program where we might want to abort computation early: mul-
tiplying together all the numbers in a list. If our algorithm sees a 0 at any point, we know
automatically that the overall product is 0, and so it’s not necessary to traverse the rest of
the list. Using continuations, we can save the state of the stack before we start computing the
product of the list, and if we see a zero, we can reinstate the old stack and return 0 to it.

Say we start with a stack k that we will return the result of our multiplication to, and we save
k.

k . mult_list(L)

We then begin multiplying together elements, adding more stack frames to the stack, and at
some point we see a z

k; mult(s(z);−); mult(s(s(z));−); mult(s(z);−) / z

We can then replace the entire stack with k, and return z to k:

k / z

In the next section, we will see how to implement this “save and replace” operation by extending
PCF with continuations.

1

2 KPCF

2 KPCF

We extend PCF with continuations to create KPCF1

2.1 Grammar

Type τ ::= τ cont

Expr e ::= letcc{τ}(x.e)
throw{τ}(e1; e2)
cont(k)

We add two new constructs to the language, letcc and throw. letcc{τ}(x.e) saves the current
continuation cont(k) in x for use in e, and throw{τ}(e1; e2) replaces the current control stack
with e2 and returns e1 to that stack. Note that cont(k) only exists in the dynamics of the
language: it is only possible to create a continuation through letcc.

2.2 Statics

Γ, x : τ cont ` e : τ

Γ ` letcc{τ}(x.e) : τ

Γ ` e1 : τ1 Γ ` e2 : τ1 cont
Γ ` throw{τ}(e1; e2) : τ

Just like with raise, the type of a throw can be arbitrary, since it does not evaluate to a value.

2.3 Dynamics

The two most interesting rules concern how stacks are bound in letcc and replaced in throw:

k . letcc{τ}(x.e) 7−→ k . [cont(k)/x]e k; throw{τ}(v;−) / cont(k′) 7−→ k′ / v

Note that the second rule implies that cont(k) is a value. The rest of the rules can be seen in
Chapter 30 of PFPL, and concern evaluating the arguments to throw.

1Since, as everyone knows, continuation starts with k.

2
.

2.4 Example 2 KPCF

2.4 Example

To see how we could use these constructs we’ve defined, let’s return to out example of multiplying
a list. We can do this in KPCF.

Note: For simplicity, we’ll treat natlist as a primitive, though it could be encoded in KPCF
as a function, or by introducing inductive types.

fn (L : natlist) letcc{nat}(x.
(fix mult_list : natlist -> nat is

fn (L’ : natlist) case L’ of
[] => s(z)
| y::ys => ifz(y;

throw{nat}(z)(x);
_.mult(y)(mult_list ys)))(L))

Notice that we’ve made a separate recursive helper function inside of our letcc, applied it to
the argument of the function. This is because we need letcc to be outside of the recursive
function, or we would not get any benefit from invoking throw.

3
.

4 PPCF

3 Parallelism

Parallelism allows parts of a program that do not depend on each other to execute simultaneously,
often increasing the running time of the program. Every parallel program has a sequential
semantics; it will evaluate to the same value when run sequentially or run in parallel. This make
parallelism distinct from concurrency, in which programs do not necessarily have a sequential
semantics.

In this recitation, we explore a form of parallelism called nested or fork-join parallelism, in which
a multiple parallel computations are forked and evaluated in parallel, and then their results are
joined together.

4 PPCF

PPCF extends extends PCF with a parallel let which forks two parallel processes and joins them
after computing their results

4.1 Grammar

Expr e ::= par(e1; e2;x1.x2.e)

4.2 Statics

The statics of parallel let are almost identical to the statics of sequential let, except for two
variables are bound in e instead of one.

Γ ` e1 : τ1 Γ ` e2 : τ2 Γ, x1 : τ1, x2 : τ2 ` e : τ

Γ ` par(e1; e2;x1.x2.e) : τ

4.3 Dynamics

Because parallel programs always have a sequential meaning as well as a parallel meaning, we
can define both a sequential and a parallel dynamics for par.

Sequential Dynamics The sequential dynamics are identical to the dynamics for let in other
languages, so we omit them here. They can be found in Chapter 37 of PFPL.

Parallel Dynamics We describe the parallel dynamics using a different form of dynamics
than previously. Before, we defined dynamics in terms of two judgments: val and 7−→. Here,
we’ll define the dynamics using evaluation dynamics, which, instead of describing an individual
step, describe the result of evaluating expressions to a value.

e1 ⇓ v1 e2 ⇓ v2 [v1, v2/x1, x2]e ⇓ v
par(e1; e2;x1.x2.e) ⇓ v

4
.

5 COST DYNAMICS

5 Cost Dynamics

The main advantage of evaluation dynamics over transition dynamics (the system with val and
7−→) is that they give us an easy way of expressing the time cost of evaluating an expression. This
is particularly important for parallelism, as the only difference between parallel and sequential
evaluation is the runtime cost.

To do this, we annotate the ⇓ with the cost graph for an expression, which represents the number
of steps required to evaluate an expression and the opportunities for parallelism.

We define a cost graph using the following grammar:

5.1 Grammar

Cost c ::= 0 Zero Cost
1 Unit Cost
c1 ⊗ c2 Parallel Combination
c1 ⊕ c2 Sequential Combination

5.2 Dynamics

The cost dynamics for par are given below.

e1 ⇓c1 v1 e1 ⇓c2 v2 [v1, v2/x1, x2]e ⇓c v
par(e1; e2;x1.x2.e) ⇓(c1⊗c2)⊕1⊕c v

If it costs c1 steps to evaluate e1 and c2 steps to evaluate e2, and c steps to evaluate the
substitution into e, then the cost of evaluating the par is (c1 ⊗ c2)⊕ 1⊕ c.

5.3 Work and Depth

We can define work, the number of steps it takes to evaluate an expression sequentially, and
depth (also called span), which is the longest chain of dependencies in a program. Depth is a
lower bound on the parallel complexity of evaluating an expression.

We can define them in terms of cost graphs using the following equations. Work is defined as

wk(c) =


0 if c = 0
1 if c = 1
wk(c1) + wk(c2) if c = c1 ⊗ c2
wk(c1) + wk(c2) if c = c1 ⊕ c2

and depth is defined as

5
.

5.3 Work and Depth 5 COST DYNAMICS

dp(c) =


0 if c = 0
1 if c = 1
max(dp(c1), dp(c2)) if c = c1 ⊗ c2
dp(c1) + dp(c2) if c = c1 ⊕ c2

Note that the depth takes the max of nodes representing parallel composition, but still adds
together the nodes representing sequential composition.

6
.

