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1 Abstract Syntax Trees

The abstract syntax tree, or ast, is the central object of study in programming language
theory.

Each ast is either a variable, which is a placeholder for an unknown object, or an operator,
which combines other ast’s. We may substitute other ast’s for variables, so variables are given
meaning by substitution.

A sort is a group of ast’s corresponding to a form of syntax. We usually define sorts by listing
the operators that build ast’s, and variables are then allowed to stand for all the possible ast’s
in the sort.

Each operator has an arity, which describes its sort, and how many and which sorts of argu-
ments it operates on.

Example: Consider the following sort Nat of natural numbers:

Operator Arity
zero ()Nat
succ (Nat)Nat

The operator zero represents the number zero, and the operator succ(a) represents the succes-
sor of the variable a, which is also a number.

Arities serve the same purpose for operators as types do for functions, which is to constrain the
set of valid objects in the system, though they are essentially only syntactic in nature.

Now, consider the sort Exp of expressions built on top of numbers:

Operator Arity
num (Nat)Exp
plus (Exp, Exp)Exp

The operator num(a) represents the number a, wrapped as an expression, and the operator
plus(a; b) represents the sum of expressions a and b, which is also an expression.

We can write ast’s using either the abstract or the concrete syntax. The abstract method
makes certain aspects of the syntax more explicit, but the concrete is easier to read and write.
In this case, since the language is simple, the abstract and concrete syntax will be almost the
same. We present the simplified syntax table (in “approximate” BNF representation).
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3 INFERENCE RULES

Sort Abstract Concrete
Nat n ::= zero() zero

succ(n) succ(n)
Exp e ::= num(n) num(n)

plus(e1; e2) plus(e1; e2)

Examples of abstract syntax trees:

zero is of sort Nat, representing zero

succ(succ(zero)) is of sort Nat, representing 2

num(succ(zero)) is of sort Exp, representing 1

plus(num(zero); num(succ(zero))) is of sort Exp, representing 0 + 1

2 Judgments

A judgment is an assertion about a property of an ast or a relationship between ast’s. We write
a judgment J about an ast a as a J or J a. Judgments may also relate multiple entities.

Examples of judgments:

n nat n is a natural number

e : τ expression e has type τ

e ⇓ v expression e evaluates to value v

e is e′ expression e is identical to e′

3 Inference Rules

An inference rule consists of a set of judgments above the line, which are known as premises,
and a single judgment below the line, known as the conclusion:

a J1 ... a Jn
a J

A rule that does not have any premises is an axiom:

a J

An inductive definition is a set of inference rules that completely describes a judgment over
the possible ast’s.

Examples of inductive definitions:

Definition of natural numbers:

zero nat (nz)
a nat

succ(a) nat
(ns)

These notes are derived from previous course notes and Chapter 2 of Practical Foundations for Programming
Languages.
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5 RULE INDUCTION

Definition of odd and even:

zero even (ez)
a even

succ(a) odd
(os)

a odd
succ(a) even

(es)

What is the difference here between Nat and nat? Both pertain to the natural numbers, but Nat
is a syntactic collection whereas a nat is a logical statement about a. We merely selected the
most obvious rules for the definition of nat, but the two concepts are otherwise unrelated.

4 Derivations

A derivation begins with a (possibly empty) sequence of premises and applies inference rules
until it reaches a conclusion. A derivation is a constructive method of proof, and the result of
one derivation can be used in another.

Example: 3 is a natural number. Proof:

zero nat
(nz)

succ(zero) nat
(ns)

succ(succ(zero)) nat
(ns)

succ(succ(succ(zero))) nat
(ns)

5 Rule Induction

A property P(a) is an arbitrary statement about an ast a.

Suppose we wish to show that if the judgment a J is derivable, then the property P(a) holds.
We may use a method of proof known as rule induction, which is similar to inductive proofs
by case analysis you have previously seen.

To prove that P holds when J is derivable, it is enough to prove that P respects (is closed under)
the rules defining the judgment J . More precisely, the principle of rule induction is:

To show that P holds over all ast’s for which J holds, it is enough to show that:

For each rule
a1 J1 . . . ak Jk

a J

If a1 J1 . . . ak Jk and P(a1) . . .P(ak) hold, then P(a) holds.

We need only repeat for each relevant rule to complete the proof.

Example: Prove the following:

If succ(a) nat, then a nat.

To prove this, it suffices to prove the following property:

P(a): if a nat and a = succ(b), then b nat.

For a proof by rule induction on our above definition of nat, we need to prove the following:

1. P(zero) (nz)

2. For every a, if a nat and P(a) then P(succ(a)) (ns)
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6 SIMULTANEOUS INDUCTION

Now we prove them:

1. WTS: P(zero). zero is not of the form succ(b). Thus, P(zero) holds vacuously.

2. WTS: P(succ(a)).

a nat [by Inductive Hypothesis]

succ(a) = succ(b) for some b [Take b = a]

b nat [Since a nat]

Thus, we have P(succ(a)).

�

6 Simultaneous Induction

Often, however, the simple rule induction described above is not enough to complete our proof.
Inductive definitions often have premises with judgements that are different from the judgment
in the conclusion. An example of this is even and odd numbers. The judgment odd relies on
even and vice versa.

zero even (ez)
a even

succ(a) odd
(os)

b odd
succ(b) even

(es)

To prove properties of such ast’s, we use a process called simultaneous induction. We
simultaneously prove two properties, P and Q, one for each judgement. For even and odd
numbers we can write the principle of induction, which looks like:

To prove two properties P and Q for even and odd numbers respectively, we need
to prove the following, one for each rule:

1. P(zero) (ez)

2. If a even and P(a), then Q(succ(a)) (os)

3. If b odd and Q(b), then P(succ(b)) (es)

If you set out initially only to prove some property P, you may need to strengthen the proof by
also coming up with some appropriate Q to prove.

Example: Prove the following:

P(a): If a even, either a is zero or a = succ(b) where b odd.

We cannot prove directly based on even, so we need another property:

Q(b): If b odd, b = succ(a) where a even.

Now we proceed by simultaneous induction:

1. WTS: P(zero).

zero is zero.

zero even. [by (ez)]

Thus, we have P(zero).
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7 STRUCTURAL INDUCTION

2. Assume a even and P(a). WTS: Q(succ(a))

a even [by I.H.]

succ(a) odd [by (os)]

Thus, we have Q(succ(a)).

3. Assume b odd and Q(b). WTS: P(succ(b))

b odd [by I.H.]

succ(b) even [by (es)]

Thus, we have P(succ(b)).

�

7 Structural Induction

Rule induction is the use of proof over individual rules to show that a property holds for all
ast’s satisfying an entire inductively defined judgment. There is an analogous proof technique,
structural induction, that uses proof over individual operators to show that a property holds
for all ast’s in an entire sort.

The principle of induction is as follows. It is simplified from the presentation in the textbook
in Chapter 1.1:

To show that P holds over all ast’s in the sort S, it is enough to show that:

1. If x is a variable of sort S, then P(x).

2. For every operator o in S, if, for every argument ai in the arity of o, P(ai)
holds, then P(o(a1; . . . ; an)) holds.

Structural induction is a fitting name for this technique, as it decomposes the abstract syntax
tree structurally into variables and operators.

How do you decide whether to use rule or structural induction? It usually depends on the claim
you wish to prove. For example, consider the claim “if succ(a) nat, then a nat” from before.
We have seen how to prove this using rule induction. Does it make sense to try to prove it using
structural induction? Why or why not?
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