Objective

15-395 Lab 5
Process Tools

This project is designed to give you experience developing system tools using the
Iproc file system. It might also be a good opportunity for you to show off you Perl
or shell scripting, or ability to use make.

Times of Interest

Assigned:

Due:

Tuesday, November 27", 2007
Tuesday, December 4", 2007

Part 1: Process Status

This part of the assignment asks you to implement a tool similar to the usual ps.
Before beginning this part of the assignment, please “man ps” and give it a try.

As with ps, the output should be nicely formatted. And include a header, unless
otherwise specificed on the command-line. Given a pid it should produce a single
line summary of the process’s vital statistics:

command name, e.g., argv[0]
state,e.qg.,S,R, T, Z, W, etc
pid

ppid

uid

Parp

The following flags should be supported:

no flag, reports on all processes using the same terminal as the ps,
itself

-a, reports on all processed on the system

-u uid, reports on all processes owned by user with uid

-u username, reports on all processes owned by userid

-p pid, report on only the process with pid pid

-n, omit the header

SPECIAL REQUIREMENT: Please do this twice, once in shell script and the
other in the 1% class programming language of your choice.



Part 2: top

This part of the assignment asks you to implement a top-like to for summarizing
system activity. Before beginning this part of the assignment, please “man top”
and give it a try. Unlike the standard top, your version need not be interactive. For
those who would like to make it interactive, “man curses”.

The report produced by your top, should have two sections. The top section
should report system summary information. The next section should list the ps-
style information, presented in sortd order, for the top n resource consuming
processes. All information should be well formatted with labels and/or headers, as
appropriate

The system-wide information should include the following:

loadaverages, for 1, 5 and 15 minutes
uptime, since the last system boot
memory information:

©)
@)
©)
@)
©)

total size
total used
total free
swap size
swap free

processor load: jiffies of user time, system time, and idle time
accesses per active ide disk or SCSI controller

The per-process information should include the following:

process name (argv[0])

userid of owner

total available memory size
process’s time in user mode
process’s time in system mode
process’s total time

The following flags should be accepted:

-n, number of processes to list, if unspecified, 25 is assumed

-m, sort by memory size

-t sort by processes total time (assumed, if neither of —t, -s, or —u are
specified, or if more than one is specified)

-S, sort by processes system time

-U, sort by processes user time

-r reverse the order of the sort



Part 3: Common Sense

If your project contains code which requires assembly (compiling, generation,
7¢), it must include a Makefile that can build either of, or all of, the

tools in your suite. This file should be well-written, represent all of the
dependencies, and should include a clean-rule.

This project contains significant common functionality among the parts. As
appropriate. This functionality should be factored out and placed into some type
of utility library. Significant common code should not be re-written.



