15-395 Lab 5
Persistent Database — Extensible Hashing

Objective

This lab serves to strengthen your coding skills while building an understanding of external data
structures. It also gives you the opportunity to turn the wheel once and build and deploy a shared library,
an important form of real-world software components.

Disk-based metadata will be important should you take databases. But, it is also important in, for
example, operating systems, where the file system consists of external metadata. The database that you
build for this lab will serve as a platform for the next lab which will introduce you to Berkley sockets as
well as concurrency.

Times of Interest

Assigned: Tuesday, October 30", 2007
Due: Thursday, November 8", 2007

Part 1: Background Reading

The structure of your database should be an extensible hash. The following survey paper is a good
scholarly source for information, which also contain citations to the papers originally presenting the
various techniques. It is available via the ACM’s digital library. Of course, google.com can turn up
information, of all kinds and quality, wholesale.

e Enbody, R.J. and Du, H.C., “Dynamic Hashing Schemes”, ACM Computing Surveys, vol
20, no 2 (June 1988): 85-113:

Part 2: Choose Your Poison

There are several different schemes for external hashing. Pick one. My personal favorite is the Linear
Hash (LH). But there are plenty of good reasons to select others. You are not required to implement
deletes beyond tombstones. But, please do feel free, to shrink the data structures, if you’d like.

Part 3: The API

Your solutions should have two parts. One part should be a shared library presenting a simple API. The
API should include open, close, put, get, and remove.

The library should be able to support multiple databases simultaneously. In other words, it should be
session-oriented. A session begins with some type of “open” and ends with some type of “close”. The
open associates the database with a handle. This handle, in turn, is provided to the other functions,
including the close, to identify the particular database. At this point in time, you need not worry about
multiple concurrent sessions of the same database. We’ll introduce that problem for the next assignment.

You might want to take a look at ndbm or gdbm (“man ndbm”, “man gdbm”) to get some ideas about
how to structure your API. In particular, you might want to pay careful attention to how they represent
the data and the key to the database.

Part 4:Storage

Your databases must be a persistent, external database. If you are keeping it in memory — you need to be
able to live without it.

For those with more experience (or just dumb ambition), please consider making your lives a bit more
complicated. Consider implementing caching within the shared libraries global space. It is sticky, but
can be fun.

Part 5: Common Sense

Your project must include a Makefile. It should be well-written, including comments, descriptive
identifiers, &c

Your database files will contain persistent information. When things don’t work right, it can be
examined to help identify the problem od, “octal dump” (“man od”) is an excellent tool for viewing raw
binary files.

But, you might want to construct some tools that allow you to do more. For example, you might want to
build some tools that know the specific structure of your database and can do some of the repetitive
parsing for you.

Last, but not least, you’ll want a ready source of data with which to feed your database. Try finding
some on the Web and mining and formatting it using shell scripts. You want to test with thousands of
records — or, well, even way more.

