
15-395 Lab 5

Persistent Database – Extensible Hashing

Objective

This lab serves to strengthen your coding skills while building an understanding of external data

structures. It also gives you the opportunity to turn the wheel once and build and deploy a shared library,

an important form of real-world software components.

Disk-based metadata will be important should you take databases. But, it is also important in, for

example, operating systems, where the file system consists of external metadata. The database that you

build for this lab will serve as a platform for the next lab which will introduce you to Berkley sockets as

well as concurrency.

Times of Interest

 Assigned: Tuesday, October 30
th

, 2007

 Due: Thursday, November 8
th

, 2007

Part 1: Background Reading

The structure of your database should be an extensible hash. The following survey paper is a good

scholarly source for information, which also contain citations to the papers originally presenting the

various techniques. It is available via the ACM’s digital library. Of course, google.com can turn up

information, of all kinds and quality, wholesale.

 Enbody, R.J. and Du, H.C., “Dynamic Hashing Schemes”, ACM Computing Surveys, vol

20, no 2 (June 1988): 85-113:

Part 2: Choose Your Poison

There are several different schemes for external hashing. Pick one. My personal favorite is the Linear

Hash (LH). But there are plenty of good reasons to select others. You are not required to implement

deletes beyond tombstones. But, please do feel free, to shrink the data structures, if you’d like.

Part 3: The API

Your solutions should have two parts. One part should be a shared library presenting a simple API. The

API should include open, close, put, get, and remove.

The library should be able to support multiple databases simultaneously. In other words, it should be

session-oriented. A session begins with some type of “open” and ends with some type of “close”. The

open associates the database with a handle. This handle, in turn, is provided to the other functions,

including the close, to identify the particular database. At this point in time, you need not worry about

multiple concurrent sessions of the same database. We’ll introduce that problem for the next assignment.

You might want to take a look at ndbm or gdbm (“man ndbm”, “man gdbm”) to get some ideas about

how to structure your API. In particular, you might want to pay careful attention to how they represent

the data and the key to the database.

Part 4: Storage

Your databases must be a persistent, external database. If you are keeping it in memory – you need to be

able to live without it.

For those with more experience (or just dumb ambition), please consider making your lives a bit more

complicated. Consider implementing caching within the shared libraries global space. It is sticky, but

can be fun.

Part 5: Common Sense

Your project must include a Makefile. It should be well-written, including comments, descriptive

identifiers, &c

Your database files will contain persistent information. When things don’t work right, it can be

examined to help identify the problem od, “octal dump” (“man od”) is an excellent tool for viewing raw

binary files.

But, you might want to construct some tools that allow you to do more. For example, you might want to

build some tools that know the specific structure of your database and can do some of the repetitive

parsing for you.

Last, but not least, you’ll want a ready source of data with which to feed your database. Try finding

some on the Web and mining and formatting it using shell scripts. You want to test with thousands of

records – or, well, even way more.

