
2004 East Central Regional Contest 5

Problem D: I Conduit!

Irv Kenneth Diggit works for a company that excavates trenches, digs holes and generally tears up
people’s yards. Irv’s job is to make sure that no underground pipe or cable is underneath where
excavation is planned. He has several different maps, one for each utility company, showing where their
conduits lie, and he needs to draw one large, consolidated map combining them all. One approach
would be to simply draw each of the smaller maps one at a time onto the large map. However, this
often wastes time, not to mention ink for the pen-plotter in the office, since in many cases portions
of the conduits overlap with each other (albeit at different depths underground). What Irv wants is a
way to determine the minimum number of line segments to draw given all the line segments from the
separate maps.

Input

Input will consist of multiple input sets. Each set will start with a single line containing a positive
integer n indicating the total number of line segments from all the smaller maps. Each of the next n
lines will contain a description of one segment in the format

x1 y1 x2 y2

where (x1, y1) are the coordinates of one endpoint and (x2, y2) are the coordinates of the other. Coordi-
nate values are floating point values in the range 0 . . . 1000 specified to at most two decimal places. The
maximum number of line segments will be 10000 and all segments will have non-zero length. Following
the last input set there will be a line containing a 0 indicating end of input; it should not be processed.

Output

For each input set, output on a single line the minimum number of line segments that need to be drawn
on the larger, consolidated map.

Sample Input

3
1.0 10.0 3.0 14.0
0.0 0.0 20.0 20.0
10.0 28.0 2.0 12.0
2
0.0 0.0 1.0 1.0
1.0 1.0 2.15 2.15
2
0.0 0.0 1.0 1.0
1.0 1.0 2.15 2.16
0

Sample Output

2
1
2



2004 East Central Regional Contest 6

Problem E: Roll Playing Games

Phil Kropotnik is a game maker, and one common problem he runs into is determining the set of dice to
use in a game. In many current games, non-traditional dice are often required, that is, dice with more
or fewer sides than the traditional 6-sided cube. Typically, Phil will pick random values for all but the
last die, then try to determine specific values to put on the last die so that certain sums can be rolled
with certain probabilities (actually, instead of dealing with probabilities, Phil just deals with the total
number of different ways a given sum can be obtained by rolling all the dice). Currently he makes this
determination by hand, but needless to say he would love to see this process automated. That is your
task.

For example, suppose Phil starts with a 4-sided die with face values 1, 10, 15, and 20 and he wishes
to determine how to label a 5-sided die so that there are a) 3 ways to obtain a sum of 2, b) 1 way to
obtain a sum of 3, c) 3 ways to obtain 11, d) 4 ways to obtain 16, and e)1 way to obtain 26. To get
these results he should label the faces of his 5-sided die with the values 1, 1, 1, 2, and 6. (For instance,
the sum 16 may be obtained as 10 + 6 or as 15 + 1, with three different “1” faces to choose from on the
second die, for a total of 4 different ways.)

Input

Input will consist of multiple input sets. Each input set will start with a single line containing an integer
n indicating the number of dice that are already specified. Each of the next n lines describes one of
these dice. Each of these lines will start with an integer f (indicating the number of faces on the die)
followed by f integers indicating the value of each face. The last line of each problem instance will have
the form

r m v1 c1 v2 c2 v3 c3 · · · vm cm

where r is the number of faces required on the unspecified die, m is the number of sums of interest,
v1, . . . , vm are these sums, and c1, . . . , cm are the counts of the desired number of different ways in which
to achieve each of the respective sums.

Input values will satisfy the following constraints: 1 ≤ n ≤ 20, 3 ≤ f ≤ 20, 1 ≤ m ≤ 10, and 4 ≤ r ≤ 6.
Values on the faces of all dice, both the specified ones and the unknown die, will be integers in the range
1 . . . 50, and values for the vi’s and ci’s are all non-negative and are strictly less than the maximum
value of a 32-bit signed integer.

The last input set is followed by a line containing a single 0; it should not be processed.

Output

For each input set, output a single line containing either the phrase “Final die face values are”
followed by the r face values in non-descending order, or the phrase “Impossible” if no die can be found
meeting the specifications of the problem. If there are multiple dice which will solve the problem, choose
the one whose lowest face value is the smallest; if there is still a tie, choose the one whose second-lowest
face value is smallest, etc.



2004 East Central Regional Contest 7

Sample Input

1
4 1 10 15 20
5 5 2 3 3 1 11 3 16 4 26 1
1
6 1 2 3 4 5 6
6 3 7 6 2 1 13 1
4
6 1 2 3 4 5 6
4 1 2 2 3
3 3 7 9
8 1 4 5 9 23 24 30 38
4 4 48 57 51 37 56 31 63 11
0

Sample Output

Final die face values are 1 1 1 2 6
Impossible
Final die face values are 3 7 9 9



2004 East Central Regional Contest 10

Problem H: Translations

Bob Roberts is in charge of performing translations of documents between various languages. To aid
him in this endeavor his bosses have provided him with translation files. These files come in twos — one
containing sample phrases in one of the languages and the other containing their translations into the
other language. However, some over-zealous underling, attempting to curry favor with the higher-ups
with his initiative, decided to alphabetically sort the contents of all of the files, losing the connections
between the phrases and their translations. Fortunately, the lists are comprehensive enough that the
original translations can be reconstructed from these sorted lists. Bob has found this is most usually
the case when the phrases all consist of two words. For example, given the following two lists:

Language 1 Phrases Language 2 Phrases
arlo zym bus seat
flub pleve bus stop

pleve dourm hot seat
pleve zym school bus

Bob is able to determine that arlo means hot, zym means seat, flub means school, pleve means bus, and
dourm means stop. After doing several of these reconstructions by hand, Bob has decided to automate
the process. And if Bob can do it, then so can you.

Input

Input will consist of multiple input sets. Each input set starts with a positive integer n, n ≤ 250,
indicating the number of two-word phrases in each language. This is followed by 2n lines, each containing
one two-word phrase: the first n lines are an alphabetical list of phrases in the first language, and the
remaining n lines are an alphabetical list of their translations into the second language. Only upper and
lower case alphabetic characters are used in the words. No input set will involve more than 25 distinct
words. No word appears as the first word in more than 10 phrases for any given language; likewise, no
word appears as the last word in more than 10 phrases. A line containing a single 0 follows the last
problem instance, indicating end of input.

Output

For each input set, output lines of the form

word1/word2

where word1 is a word in the first language and word2 is the translation of word1 into the second
language, and a slash separates the two. The output lines should be sorted according to the first
language words, and every first language word should occur exactly once. There should be no white
space in the output, apart from a single blank line separating the outputs from different input sets.
Imitate the format of the sample output, below. There is guaranteed to be a unique correct translation
corresponding to each input instance.



2004 East Central Regional Contest 11

Sample Input

4
arlo zym
flub pleve
pleve dourm
pleve zym
bus seat
bus stop
hot seat
school bus
2
iv otas
otas re
ec t
eg ec
0

Sample Output

arlo/hot
dourm/stop
flub/school
pleve/bus
zym/seat

iv/eg
otas/ec
re/t




