
1 

 
 
 
 
 
 
 

Carnegie Mellon University 
 

Invitational Programming Competition 
 

Eight Problems 
 

March 31, 2007 
 

 
 
 
You can program in C, C++, or Java; note that the judges will re-compile 
your programs before testing. 
 
Your programs should read the test data from the standard input and write 
results to the standard output; you should not use files for input or output. 
 
All communications with the judges should be through the PC2 environment. 
 
 
 



2 

Problem A: Flight distances 
 
Airline companies keep track of the distance traveled by each plane in order to ensure 
timely maintenance. Your task is to write a program that helps to determine these 
distances; specifically, it should input the coordinates of the airports visited by a specific 
plane and compute the overall flight distance. For simplicity, assume that the earth 
surface is flat, and the plane always flies along a straight line between two airports. 
 
Input 
 
The input includes multiple test cases, which correspond to different planes; the number 
of cases is at most 20. Each test case is a list of airports, where each airport is on a 
separate line. An airport description consists of two positive integers between 1 and 
10,000, with a single space between them, which are the airport coordinates in miles. The 
plane starts in the first of these airports, and visits the other airports in order, until 
reaching the last airport. The total number of airports in a test case is between 2 and 
2,007; the last line of a test case is “0 0”, which does not represent an airport. The last 
line of the input, after the last test case, is “─1 ─1”. 
 
Output 
 
For each test case, the output is a single integer on a separate line, which represents the 
number of miles traveled by the plane, rounded to the nearest integer. 
 
Sample input 
 
1 1 
2 2 
0 0 
1 1 
1 11 
11 11 
11 1 
1 1 
0 0 
-1 -1 
 
Sample output 
 
1 
40 
 



3 

Problem B: Feel the superpower 
 
Alice and Bob are two mathematicians, who often collaborate in their number-theory 
research, but unfortunately they tend to disagree when selecting a scientific journal for 
publishing their results. To avoid related arguments, they play a game of chance, called 
“superpowers,” and then the winner chooses the journal. The game is based on the 
following recursive definition of the superpower operation: 
 

• For every positive integer n,  
superpower(n, 1) = n 

• For every two positive integers n and m,  
superpower(n, m + 1) = n superpower(n, m) 

 
For example, 

superpower(2, 3) = 1622 4)2( 2

==  

superpower(2, 4) = 65536222 16)2()2( 4)22(

===  
 
When Alice and Bob play the game of superpowers, they randomly select two natural 
numbers m and n, and then compare superpower(m, n) with superpower(n, m). If the first 
value is greater than the second, Alice wins; if it is smaller, Bob wins; finally, if the two 
values are equal, it is a draw. Unfortunately, Alice and Bob do not have much experience 
with programming, and they have to compare these values manually. Your task is to help 
them by writing a comparison program. 
 
Input 
 
The input includes multiple test cases; each case is on a separate line, and the number of 
cases is at most 20. A test case includes two integers between 1 and 5, with a single space 
between them, which are the values of m and n. The last line of the input is “─1 ─1”, 
which does not represent a test case. 
 
Output 
 
For each test case, the output is the word “smaller”, “greater”, or “equal” on a separate 
line, which represents the result of comparing superpower(m, n) with superpower(n, m). 
 
Sample input 
 
1 2 
2 2 
2 4 
4 5 
-1 -1 
 
Sample output 
 
smaller 
equal 
greater 
greater



4 

Problem C: Xxigle from Xxigle 
 
The Xxigle civilization is an advanced alien culture, which has evolved on the Planet of 
Xxigle, in the warm sunshine of the Xxigle Sun. Xxiglian people look very similar to 
Earth people, which allows them to visit Earth and pass for humans during their visits. 
When young Xxigles stay on Earth, they sometimes enroll in Earth universities, and 
sometimes even earn local degrees. Since the intellectual abilities of Xxiglian people are 
far superior to the human abilities, they can easily take a lot of hard courses and get 
excellent grades. In fact, if you have a friend who always gets straight As, he or she is 
probably from Xxigle. 
 
Most Xxiglian students can take an unlimited number of Earth courses per semester, and 
the only obstacle that prevents them from graduating in one semester is the university 
rules regarding course prerequisites. For example, if course 101 is a prerequisite of 201, 
course 201 is a prerequisite of 301, and course 301 is part of the degree requirements, 
then even the smartest Xxigle needs at least three semesters to graduate. As another 
example, if course 101 is a prerequisite of 201, and course 201 is a prerequisite of 101, 
then students cannot graduate at all. 
 
Your task is to write a program that analyzes prerequisite rules and determines the 
minimal number of semesters required for earning a degree. Assume that a Xxigle student 
can take any number of courses per semester, but she should follow all prerequisite rules, 
and she cannot take a course and its prerequisite in the same semester. For simplicity, 
also assume that she has to take all available courses. 
 
Input 
 
The input includes multiple test cases, which correspond to different university programs; 
the number of cases is at most 20. Each test case is a list of prerequisite rules, where each 
rule is on a separate line. A rule description consists of two positive integers between 101 
and 999, with a single space between them, which represent course numbers; the first 
course in a rule is a prerequisite of the second course. The total number of rules in a test 
case is between 1 and 2,007; the last line of a test case is “0 0”, which does not represent 
a rule. The last line of the input, after the last test case, is “─1 ─1”. 
 
Output 
 
For each test case, the output is either an integer or the words “inconsistent rules”, on a 
separate line. If the prerequisite rules allow students to graduate, then the output is the 
smallest number of semesters required for graduation. If the prerequisite rules do not 
allow graduation, then the output is “inconsistent rules”. 
 



5 

Sample input 
 
101 201 
202 301 
0 0 
101 201 
301 401 
0 0 
101 201 
101 301 
201 401 
301 401 
401 501 
0 0 
101 201 
201 101 
0 0 
─1 ─1 
 
Sample output 
 
3 
2 
4 
inconsistent rules 



6 

Problem D: Prime time 
 
A prime number is an integer number, strictly greater than 1, that is divisible only by 1 
and itself; for example, 23 and 239 are prime numbers, whereas 0, 1, 4, and 2,007 are not 
primes. The first prime number is 2, the second is 3, the third is 5, and so on. Your task is 
to write a program that finds the nth prime number for a given n. 
 
Input 
 
The input is a list of distinct positive integers between 1 and 1,000,000, each on a 
separate line with no surrounding spaces; the total number of input integers is at most 
2,007. The last line is “─1”, which does not represent an input integer. 
 
Output 
 
For each input value n, the output is the nth prime number, on a separate line. 
 
Sample input 
 
2 
3 
23 
239 
10000 
─1 
 
Sample output 
 
3 
5 
83 
1499 
104729



7 

Problem E: Peaceful knights 
 
A knight in the chess game is a piece that attacks eight squares around it as shown in the 
picture on the left. If some of these squares are outside the chessboard, then it attacks 
fewer squares; for instances, the knight in the picture on the right attacks only two 
squares. Your task is to determine the maximal number of knights that can be placed on 
the square board of a given size, in such a way that no knight attacks any other. 
 

 
 
Input 
 
The input includes multiple test cases; the number of cases is at most 20. Each test case is 
an integer between 1 and 1,000, on a separate line with no surrounding spaces, which 
represents the size of a square chessboard; for example, if this integer is 8, then the board 
is 8 × 8. The last line of the input is “─1”, which does not represent a test case. 
 
Output 
 
For each test case, the output is a single integer on a separate line, which represents the 
maximal number of knights that can be placed on the board without attacking each other. 
 
Sample input 
 
1 
2 
3 
4 
-1 
 
Sample output 
 
1 
4 
5 
8 
 

knight 

attacked 
squares 



8 

Problem F: Round table 
 
King Arthur once invited a number of knights to his castle, where they stayed for several 
days. Each evening, the king and his guests dined at the Round Table. According to the 
king's decree, they took different seats on different evenings, and no two people sat next 
to each other more than once. When the knights could no longer satisfy this decree, they 
left the king's castle. What is the maximal number of days they could have stayed in the 
castle? Your task is to write a program that answers this question. 
 
Input 
 
The input includes multiple test cases; the number of cases is at most 20. Each test case is 
a prime number between 2 and 1000, on a separate line with no surrounding spaces, 
which represents the number of people at the table. Note that this number is prime in all 
test cases. The last line of the input is “─1”, which does not represent a test case. 
 
Output 
 
For each test case, the output is a single integer on a separate line, which represents the 
maximal number of seating arrangements that satisfy the king’s decree. 
 
Sample input 
 
2 
3 
5 
239 
─1 
 
Sample output 
 
1 
1 
2 
119 



9 

Problem G: Dog racing 
 
Jim is a forest ranger, and he always takes his dog with him to work. Every morning, Jim 
and his dog go to the office to complete the daily paperwork, and then spend the rest of 
the day in the forest. Jim lives in a few miles from the office, and he walks to the office 
through the woods, while his dog impatiently runs back and forth. 
 
When Jim leaves his home, the dog runs ahead of him all the way to the office and then 
back from the office to Jim. After finding Jim, the dog again runs to the office, and then 
again back to Jim, and so on; it continues running to the office and back until Jim reaches 
the office. Clearly, the distance covered by the dog is greater than the distance from Jim’s 
home to the office. Your task is to write a program that computes this distance. 
 
Input 
 
The input includes multiple test cases, each on a separate line; the number of cases is at 
most 20. A test case includes three integers between 1 and 100, separated by single 
spaces; the first integer is the distance from Jim’s home to his office in miles, the second 
is Jim’s speed in miles per hour, and the third is the speed of the dog, also in miles per 
hour, which is strictly greater than Jim’s speed. The last line of the input is “─1 ─1 ─1”, 
which does not represent a test case. 
 
Output 
 
For each test case, the output is a single integer on a separate line, which represents the 
number of miles covered by the dog, rounded to the nearest integer. 
 
Sample input 
 
2 3 5 
1 99 100 
-1 -1 -1 
 
Sample output 
 
3 
1 
 
 



10 

Problem H: Heffalump hunt 
 
If you have read about Winnie-the-Pooh, you may remember that Pooh and his friend 
Piglet are trying to catch a heffalump, which is a large animal that may or may not look 
like an elephant. Initially, they tried to use a Cunning Trap, which was a Very Deep Pit 
with honey jars at the bottom, but this approach did not work; apparently, heffalumps are 
sufficiently smart to avoid this trap. 
 
Eventually, Pooh and Piglet have decided to go into Heffalump Valley, which is a maze 
of large rocks, and try to corner a heffalump. Since heffalumps run twice faster than bears 
and pigs, Pooh and Piglet should carefully plan their strategy. Your task is to write a 
program that determines whether they will succeed. 
 
We represent the valley by a rectangular greed, where some squares are empty, and some 
contain rocks; we give two examples of a valley in the picture. We know the initial 
positions of Pooh, Piglet, and all heffalumps that live in the valley, and we assume that 
neither the two hunters nor the heffalumps leave the valley during the hunt. 
 
Pooh, Piglet, and heffalumps can move only among empty squares, and they cannot 
climb rocks. At each move, Pooh, Piglet, and heffalumps can remain in their current 
squares or move to one of the four adjacent squares, as long as these squares are within 
the valley and do not contain rocks. The hunt is a sequence of steps, where each step 
includes one move by Pooh, one move by Piglet, and two moves by each heffalump. 
First, Pooh makes his move, then Piglet makes his move, and then each heffalump makes 
its two moves; note that Pooh, Piglet, and several heffalumps may be on the same square 
at the same time. 
 
Pooh and Piglet are trying to catch a heffalump, whereas all heffalumps are trying to 
evade them. We assume that the hunters and heffalumps always know the positions of 
each other. If either Pooh or Piglet ever shares a square with a heffalump, then the two 
friends have caught this heffalump and succeeded in their hunt. Your program should 
determine whether they can eventually catch a heffalump or all heffalumps can 
indefinitely avoid the capture. 
 

 
 

Winnie-the-Pooh 

Piglet 

heffalump 

rock 



11 

Input 
 
The input includes multiple test cases, which correspond to different layouts of the 
valley; the number of cases is at most 20. The first line of a test case includes three 
integers, n, m, and k, which are between 2 and 10; the first two integers represent the 
length and width of the valley, and the third is the number of heffalumps. The rest of the 
test case consists of m lines, each containing exactly n characters, which represent the 
layout of the valley. We denote empty squares by “–”, rocks by “x”, the position of 
Winnie-the-Pooh by “w”, the position of Piglet by “p”, and the position of each 
heffalump by “h”. Initially, the two hunters and all heffalumps are on different squares; 
thus, the map includes one letter “w”, one letter “p”, and k letters “h”. The last line of a 
test case is blank, which is not part of the map. The last line of the input, after the last test 
case, is “end”. 
 
Output 
 
For each test case, the output is the word “success” or “failure” on a separate line, which 
represents the outcome of the hunt. If Pooh and Piglet can eventually catch a heffalump, 
the output is “success”; if all heffalumps can indefinitely evade them, it is “failure.” 
 
Sample input 
 
5 6 2 
h---h 
-x-x- 
-x-x- 
-x-x- 
-x-x- 
w---p 
 
5 6 5 
hhhhh 
-x-x- 
-x-x- 
w---- 
xxxxx 
p---- 
 
end 
 
Sample output 
 
success 
failure 


