
15-251: Great Theoretical Ideas In Computer Science

Recitation 14 Solutions

PRIMES ∈ NP

The set of PRIMES of all primes is in co-NP, because if n is composite and k | n, we can verify this in
polynomial time. In fact, the AKS primality test means that PRIMES is in P. We’ll just prove PRIMES
∈ NP.

(a) We know n is prime iff φ(n) = n−1. Additionally, if n is prime then Z∗
n is cyclic with order n−1.

Given a generator a of Z∗
n and a (guaranteed correct) prime factorization of n− 1, can we verify

n is prime?

If a has order n− 1, then we are done. So we must verify a has order dividing n− 1:

an−1 ≡ 1 mod n

and doesn’t have smaller order, i.e. for all prime p | n− 1:

a(n−1)/p 6≡ 1 mod n

a is smaller than n, and there are at most log(n) factors each smaller than n, so our certificate is
polynomial in n’s representation.

Similarly, each arithmetic computation is polynomial in log(n), and there are O(log(n)) of them.
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(b) What else needs to be verified to use this as a primality certificate? Do we need to add more
information?

We also need to verify that our factorization (p1, α1), (p2, α2), . . . , (pk, αk) of n − 1 is correct, two
conditions:

1. pα1
1 pα2

2 . . . pαk
k = n− 1 can be verified by multiplying and comparing, polynomial in log(n).

2. All of p1, p2, . . . , pk are prime.

To verify this second condition, we are faced with the problem we started with, but for smaller primes.
The natural extension is to create a tree of primality certificates:

23 : a = 5, 22 = 2 · 11

2 11 : a = 2, 10 = 2 · 5

2 5 : a = 2, 4 = 22
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By induction on n, the size of the tree (excluding leaves) is bounded by 4 log(n), and O(log2(n)) bits
are stored at each node. So our certificate is polynomial in n’s representation, and since our time bounds
from part (a) apply at each node, verification is poly-time as well.
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Approximation Algorithms

(a) Given a graph on n vertices that we know to be 3-colorable (but not 2-colorable), we wish to
give a coloring that uses as few colors as possible. Give a polynomial algorithm that is a

√
n-

approximation for this minimization problem.
Hint: We can 2-color a 2-colorable graph in polynomial time using the greedy algorithm, and if
the maximum degree in a graph is ∆, we can greedily (∆ + 1)-color it in polynomial time as well.

Fun fact: Unless P = NP , not only is there no c-approximation for any constant c, but also there
exists some ε > 0 such that there is no O(nε)-approximation.

Algorithm:
If the max degree of G is at least

√
n, pick a vertex v with degree ≥

√
n. 2-color the neighborhood

of v (using two colors that have not been used before). Remove N(v) and continue on the rest of
the graph. Note that n is fixed as the number of vertices in the original graph, not the order of the
subgraph we recursively call on.
If the max degree is less than

√
n, greedily color it with

√
n new colors.

This gives a valid coloring because we use new colors at each iteration, and the colorings at each
iteration are valid. In particular, we know we can 2-color the neighborhood of any vertex because the
input graph is 3-colorable and that vertex must be colored differently than everything in its neighborhood.

Next, notice that we recursively 2-color at most n/
√
n =

√
n times, as each time we remove at

least
√
n vertices. Finally, we color the rest of the graph with

√
n colors, thus coloring the whole

graph with at most 3
√
n colors. We know the optimal coloring uses exactly 3 colors, so we have a√

n-approximation as desired.

Finally, the algorithm is polynomial because there are at most
√
n iterations, each of which take poly-

nomial time (using greedy algorithms).
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