15-251: Great Theoretical Ideas In Computer Science

Recitation 13 Solutions

Review

The set P is the set of all languages L such that there exists a program P and a constant ¢ € R
such that P decides L and P(z) runs in at most |x|° steps for all 2. Less formally, P is the set
of all languages that are decidable in polynomial time.

The set NP is the set of all languages L such that there exists a program V' and a constant ¢ € R
such that for all z,

— If z € L then there exists a string y such that V (z,y) returns “yes” in at most |z|° steps.

— If z ¢ L then for all strings y, V (z,y) returns “no” in at most |x|° steps.

Less formally, NP is the set of all languages for which a proof of membership can be checked in
polynomial time.

A (many-one) reduction from a language L to a language L' is a function f: L — L' such that
x € L& f(x) € L. Inthis class we are interested only in polytime reductions, i.e., reductions that
can be computed in polynomial time. Whenever we say reduction, we mean polytime reduction.

A language L is NP-hard if for all languages L’ € NP, there exists a polytime reduction from L’
to L.

A language L is NP-complete if L € NP and L is NP-hard.

For your homework, you may assume without further proof (we've already shown this) that
CIRCUITSAT,35AT,3COLOR, CLIQUE, INDSET are all NP-complete.

Stupid Reductions...

Recall the definition of the halting problem:

HALT: Given a machine M and an input w, does M halt on w?

And the definition of the three-coloring problem:

3COLOR: Given a graph G, does G have a valid 3-coloring?

Now,

define a new language ISSORTED, in the expected way:

ISSORTED: Given a list [of positive integers, are they sorted in non-decreasing order?

Show that 3COLOR reduces to HALT.

Show that ISSORTED reduces to 3COLOR.

What can you conclude from these two reductions?

Given an oracle for HALT, we can trivially solve 3COLOR. Construct a machine M which will try all
possible 3-colorings of a graph. We make this machine halt if it finds a valid 3-coloring, and loop
forever otherwise. Now, given an input G to 3COLOR, we have no more work to do, we simply pass
the input into HALT(M, G) and see what the answer is. Note that constructing the machine M can
be seen as constant time because it doesn't depend on our input G at all!

Given an oracle for 3COLOR, we can also solve ISSORTED easily. Remember that a reduction is just
required to be in polytime. But checking if a list is sorted is easily done in polytime. In this case, when
given an input for ISSORTED, we simply don't even use the oracle for 3COLOR, and just check if the
list is sorted ourselves. This is polytime, so it is a valid reduction.

What did we just show? Not a whole lot! We showed that HALT is NP-hard, so every problem in NP
reduces to it. Informally, this means that HALT is at least as hard as every problem in NP. This should
be expected, since HALT is undecidable (and thus very, very hard). We didn't show that HALT is
NP-complete because we can't show that HALT € NP.

We also showed that 3COLOR is harder than ISSORTED. Actually, our reduction for ISSORTED would
have worked with any language. We can show that ISSORTED reduces to any other problem that
we want. Informally, this means that ISSORTED is among the easiest problems that we can define.
All problems in P are among the easiest by this definition, as solving them is just as easy as doing a
polytime reduction.

How about you PROVE these are NP-complete instead of just taking
our word for it?

Recall two problems from lecture:

CLIQUE: Given a graph GG and a positive integer k, does GG have a k-clique?
INDSET: Given a graph G and a positive integer k, does GG have an independent set of size k7

Show that CLIQUE and INDSET are NP-complete by reducing 3SAT to one of these problems.
(Since we've already shown that CLIQUE and INDSET reduce to one another, it will suffice to show
that either one is NP-complete.)

Clique is in NP because we can provide the k-clique and verify that it is a clique in polytime. Now, we
will show that 3SAT reduces to CLIQUE, thus showing that CLIQUE is NP-hard.

Say that we are given an instance of 3SAT with n variables z1,...,x, and k clauses. For each clause
k, with literals 1, zo, ~x3, we create three nodes x1x, Xof, T_3k.

Now, for every node x;i, we connect it to all other nodes in the graph such that this node doesn't
contradict x;;. That is, we don’t connect it to any node of the form z—;;. Also, we don't connect it to
the other two nodes for clause k.

Now, we ask if this graph has a k-clique. If so, then we must have one node from each clause selected.
Further, we don't have any nodes representing opposite literals x; and —x;, so looking at the nodes in
the k-clique will give us a satisfying assignment.

If there is no k-clique, then there is no way to choose one literal from each clause to be satisfied such that
no literals are in conflict with one another. This means that there is no solution to our instance of 3SAT.

Therefore, CLIQUE is in NP and is NP-hard, so CLIQUE is NP-complete.

SUBSETSUM

Recall the following definition of problems:
SUBSETSUM: For a given finite A C Z and k € Z, determine if there is a set S C A such that

Zx:k

PARTITION: For a given finite A C Z determine if there is a set S C A such that

= > x

z€S ke A\S

Assume that SUBSETSUM is NP-complete. Prove that PARTITION is NP-complete.

The important part of this question is to remember exactly what we need to prove for NP-completeness.
NP-complete means both NP-hard and NP. Let’s start with NP-hard:

We need to show that PARTITION is NP-hard, that is, at least as hard as SUBSETSUM. This
requires a reduction of SUBSETSUM to PARTITION: for an input A to SUBSETSUM, just add the
element 2k — > _ , = as in recitation 7.

Next we need to show that PARTITION is in NP. Note that S in the definition of the problem
is a certificate. One sentence answers are usually sufficient for proof that a problem is in NP because
the problem is usually “Is there a y in with a certain property?”. Just make sure the certificate is of
polynomial size, and takes polynomial time to verify.

Exactly 33% gives you an A4. All other scores get an F.

Recall the definition of 3-SAT: “Determine if a formula of the form (—z3VxaVzs) A(—z1 VaaVes). ..
is satisfiable.” Note that this is equivalent to each clause having at least one literal evaluate to true.

We define another problem, 1in3-SAT as “Is there a truth assignment where exactly one literal in each

clause evaluates to true.”
Assume 1in3SAT is NP-complete. Prove that 3-SAT is NP-complete.

3SAT is in NP, because a truth assignment is a certificate.

Take a clause in the input formula. If it has one or two literals, the proof is trivial. The core of this
problem is to construct a set of clauses from three literals (a,b, and c¢) that evaluates to true if and
only if exactly one of the literals evaluates to true. Let a/, b’, and ¢’ be the negations of a, b, and c,
respectively. If for some literal x, a = x, then @’ = z, and if @ = —z, then a’ = z. Note that the
negations are also literals. Note that the clause (a VV bV c¢) forces at least one of the three to be true.
If both @ and b are true, then we have a problem, so we force one of them to be false: (a’ V1'). We do
this with the other two pairs (a’ V), and (b’ V ¢). The result is the four clauses:

(aVbVe)A(d VY)YA (VYA W V)

We construct these four clauses for each clause in the original formula, and pass this into the 3-SAT

oracle.

Do not visit xkcd.com/230

We define two very similar problems:

HAMILTONIAN-CYCLE: for a given graph G, is there a cycle that visits every vertex exactly once?
HAMILTONIAN-PATH: for a given graph G, is there a path that visits every vertex exactly once?

Consider an example graph:
6

s \)
\ A
3
Here is a hamiltonian cycle:
6

1

\
\ \
\ \
\ \
\ \

2

Here is a hamiltonian path:

Assume HAMILTONIAN-PATH is NP-complete. Prove that HAMILTONIAN-CYCLE is NP-complete.

HAMILTONIAN-CYCLE is in NP, because a cycle is a certificate.

We need to reduce HAMILTONIAN-PATH to HAMILTONIAN-CYCLE. Given a graph G = (V, E), we
want to construct a graph G’ = (V’/, E’) such that G has a hamiltonian path if and only if G’ has a
hamiltonian cycle. Let v be a new vertex. Let V' =V U {v}. Let B/ = EU{(v,z) |z € V'}.

Proof of correctness:

Assume G’ has a hamiltonian cycle. Remove v from this cycle, and you have a hamiltonian path in G.
Assume G has a hamiltonian path. Connect both ends of this path to v, and you have a hamiltonian
cycle in G.

Assume HAMILTONIAN-CYCLE is NP-complete. Prove that HAMILTONIAN-PATH is NP-complete.

HAMILTONIAN-PATH is in NP, because a cycle is a certificate.

Given a graph G = (V,E), we want to construct a graph G’ = (V' E’) such that G has a
hamiltonian cycle if and only if G’ has a hamiltonian path. Attempt one: if we let G’ = G, then
it works in one direction. Specifically, if there is a cycle, then there will be a path. The problem
is that it might not be possible to connect the endpoints in a path, so if there is a path, there
might not be a cycle. So the intuition is to make sure that the path endpoints are connected.
We don’t know what the endpoints are though. Note that a vertex of degree one must be an end-
point, so if we introduce two new vertices of degree one, the path must go from one of them to the other.

Attempt two: Let x and y be two new vertices. Let a and b be two adjacent vertices in G.
Let V! =V U{z,y}. Let E' = EU{{z,a},{y,b}}. If there is an edge in G’, then we can construct a
cycle in G by removing x and y from the path, and connecting the endpoints. If there is a cycle in G
that contains the edge {a, b}, then we can construct a path in G’ starting at z, going to a, traveling
the cycle until b, and then going to y. The problem is that if there is a cycle in G that does not
contain the edge {a, b}, then it doesn't correspond to a path in G’. We need to change things a little.
Note that for a given a (which we connect to x, we had many choices a neighbor b (which we connect
to y). One of these neighbors must be adjacent to a in the cycle. What if we include every neighbor
of a? Then the degree of y wouldn't be one anymore. So lets introduce another vertex z connected to y.

Attempt three: Let a be a vertex in V. Construct a graph G’ from G with three new vertices
x, y, and z. Connect x to a. Connect every neighbor of a to y. Connect y to z.

Proof of correctness:

Consider a path in G’. Note that the path must travel from x to a through every other vertex, to y
and finally z. Remove z, y, and z from the path and connect the endpoints to form a cycle.

Consider a cycle in G. Note that the cycle must pass through a and then one of a's neighbors. Let b
be this neighbor. Construct a path in G’ by starting at x, going to a, traveling through the cycle (the
long way) to b, to y, and finally z.

