1. **Problem 1**

Let $L_1 \subset L_2$.

(a) If L_1 is a regular language, then is L_2 necessarily a regular language?

Solution:

(b) If L_2 is a regular language, then is L_1 necessarily a regular language?

Solution:

2. **Problem 2**

Consider a regular language L that accepts a string if the 6th to last bit is a 1 (over an alphabet of $\{0, 1\}$.

(a) Construct an NFA that recognizes L.

Solution:

(b) Argue that any DFA which recognizes L must have at least 64 states.

Solution:

3. Problem 3

Given a DFA for L, provide a formal construction for a DFA that recognizes L^{*}. In other words, provide the 5-tuple that characterizes $Kleene(L) = \{w_1...w_k | k \ge 0 \text{ and } each w_i \in L\}$.

Solution:

4. Problem 4

Draw a DFA that accepts the regular language represented by the regular expression $((01)^*)001$.

Solution: