1. The RSA Is Watching You

Alice wants to use RSA encryption to allow other people to send her messages. She picks 251, 257 as her two large primes p, q and 15251 as her encryption key e.

(a) Find Alice's secret key d.

(b) Suppose that Bob wants to send Alice the message 2014. What should his cipher text be?

Solution:

Bob needs to send Alice the cipher text $2014^{15251} \pmod{64507} = 12305$.

(c) Suppose that Bob sends Alice the cipher text 16648. What is Bob's original message?

Solution:

Bob's original message is $16648^{4251} \pmod{64507} = 1337$.

2. Why So Blum?

(a) Suppose that p is prime, and that a is a modular residue of p. Prove that a is a quadratic residue mod p iff $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$.

Solution:

Suppose that a is a quadratic residue mod p. Then there exists a modular residue x in p such that $x^2 \equiv a \pmod{p}$. This implies that $x^{p-1} \equiv a^{\frac{p-1}{2}} \pmod{p}$. By Fermat's little theorem, $x^{p-1} \equiv 1 \pmod{p}$, so $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$. Suppose that $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$. Let b be a generator mod p. Then, for some integer k, $b^k = a$. This implies that $b^{\frac{k(p-1)}{2}} \equiv 1 \pmod{p}$. As the order of b is p-1, $\frac{k}{2}$ must be an integer. Then, as $(b^{\frac{k}{2}})^2 \equiv a \pmod{p}$, a is a quadratic residue mod p.

(b) Suppose n is a Blum integer. Prove that n-1 is a quadratic non-residue mod n.

Solution:

We can write n = pq for some primes p, q such that $p, q \equiv 3 \pmod{4}$. As $\frac{p-1}{2}$ is either 1 or 3 mod 4, $(-1)^{\frac{p-1}{2}} \equiv -1 \pmod{p}$. By the result from part a, -1 is a quadratic non-residue mod p.

AFSOC that n-1 is a quadratic residue mod n. Then there exists a modular residue x in p such that $x^2 \equiv n-1 \pmod{n}$. We can write $x^2 = ns + n - 1 = pqs + n - 1$ for some integer s.

This implies that $x^2 \equiv n - 1 \equiv -1 \pmod{p}$, but this is a contradiction, as we found that -1 is a quadratic non-residue mod p. Thus, n - 1 is a quadratic non-residue mod p.

3. Regular Show

Let $\Sigma = \{0, 1\}.$

(a) Is $L = \{xyx^R | x, y \in \Sigma^*\}$ regular? Explain your reasoning.

Solution:

L is regular. Any string $s \in \Sigma^*$ can be written as $\epsilon s \epsilon$, so $L = \Sigma^*$. The DFA that accepts L consists of one accepting state with all transitions from this state looping back to it.

(b) Is $L = \{x \mid x \in \Sigma^*\}$ regular? Explain your reasoning.

Solution:

L is not regular.

AFSOC that L is regular. Then there exists a DFA that accepts all strings that are in L and rejects the ones that aren't. Let the number of states in this DFA be k.

Let string s_i be the string consisting of k+2 0's concatenated with a 1 concatenated with i 0's, for all $i \in [k+1]$.

Feed these strings into the DFA. As there are only k states in the DFA, by the pigeonhole principle, there must exist two strings, s_a, s_b with $a \neq b$, that end up at the same state.

Let A be s_a concatenated with k + 2 - a 0's, and B be s_b concatenated with k + 2 - a 0's. Feed these strings into the DFA. As s_a, s_b ended up at the same state, A and B should also end up at the same state. But by the definition of L, A must end up at an accepting state, and B must end up at a rejecting state. So, we have a contradiction, which means that L is not regular.

(c) Suppose that $L' = L_1 \cap L_2$, and that L', L_2 are both regular. Is L_1 regular? Explain your reasoning.

Solution:

 L_1 is not necessarily regular. Suppose L_1 is irregular and $L_2 = \{\epsilon\}$, which is regular. Then, $L' = L_1 \cap L_2 = \{\epsilon\}$, which is also regular.

(d) Suppose L_1, L_2 are both regular, and that $L' = \{xyz | (x \in L_1) \land (y \notin L_2) \land (z \in L_1) \land (z \in L_2)\}$. Is L' regular? Explain your reasoning.

Solution:

L' is regular. Using the givens, and the fact that regular languages are closed under complement and intersection, L_2^c and $L_1 \cap L_2$ are regular. Then, as regular languages are closed under concatenation, L' must also be regular.