
15-251: Great Theoretical Ideas In Computer Science

Recitation 8

Mathematicians in Paris

It turns out there’s a pretty strong relationship between the Chinese Remainder Theorem and Lagrange
Interpolation. The following restatements will hopefully make it clear the two are, in fact, essentially
the same.

The Chinese Remainder Theorem Let m1,m2, . . . ,mk be pairwise relatively prime positive integers
greater than 1, and let r1, r2, . . . , rk be integers. The system of congruences

x ≡ r1modm1

x ≡ r2modm2

...

x ≡ rk modmk

has a unique solution modm1m2 · · ·mk. In particular, it has a unique solution 0 ≤ x <
m1m2 · · ·mk.

The Lagrange Interpolation Theorem Let x1, x2, . . . , xk be distinct elements of a field F and let
y1, y2, . . . , yk ∈ F . The system of polynomial congruences

P (X) ≡ y1mod (X − x1)

P (X) ≡ y2mod (X − x2)

...

P (X) ≡ yk mod (X − xk)

has a unique solution mod (X − x1)(X − x2) · · · (X − xk). In particular, it has a unique solution
of degree at most k − 1.

(The Remainder Theorem, which we proved in lecture, states that the remainder of the division
of a polynomial Q(X) by X−a is equal to Q(a). Note that by this theorem, P (X) ≡ yimod (X−
xi) is exactly equivalent to P (xi) = yi.)

The Lagrange Interpolation Theorem is usually stated very differently from the above; in lecture, we
gave it as

The Lagrange Interpolation Theorem (from Lecture) Let pairs (a1, b1), (a2, b2), . . . , (ad+1, bd+1) from
a field F be given (with all ais distinct). Then there is exactly one polynomial P (X) of degree
at most d with P (ai) = bi for all i.

Can you see how the Lagrange Interpolation Theorem as covered in lecture follows from the Chinese
Remainder Theorem-esque interpretation introduced above?
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Forgot About Groups

(A, ◦) is defined as a group when the following four conditions are met:

Closure For all x, y ∈ A, x ◦ y ∈ A.

Associativity For all x, y, z ∈ A, (x ◦ y) ◦ z = x ◦ (y ◦ z).

Identity There is an e ∈ A such that for all x ∈ A, x ◦ e = e ◦ x = x.

Inverses For every x ∈ A, there is a y ∈ A such that x ◦ y = y ◦ x = e.

We define (A, ◦) as abelian (commutative) if for every x, y ∈ A, x◦y = y◦x. Danger! Commutativity
is not a group axiom. There are plenty of groups that are not commutative.

(a) Is Z+ equipped with the following function a group? If a 6= b then f(a, b) = max(a, b). Otherwise,
f(a, b) = 1.

(b) Given a group G under a binary operation ◦, a subset H of G is called a subgroup of G if H
also forms a group under the operation ◦.
Prove that if G is a group and the following hold:

(1) H ⊆ G.

(2) H is nonempty.

(3) For all x, y ∈ H, x ◦ y−1 ∈ H.

then H ≤ G (H is a subgroup of G).

(c) Let G be a group with a nontrivial abelian subgroup H (i.e. H 6= {1}). Is G necessarily abelian?

Morph Money Morph Problems

We define a homomorphism from a group (A, ◦) to a group (B, ∗) as a function f : A→ B such that
for every x, y ∈ A, f(x ◦ y) = f(x) ∗ f(y). (A, ◦) is homomorphic to (B, ∗) if and only if there is a
homomorphism from (A, ◦) to (B, ∗).
We define an isomorphism as a bijective homomorphism. Two groups are isomorphic if there is an
isomorphism between them. Since under isomorphism we can map each element from one group to the
other and back while preserving the group operation, the two groups are essentially “the same,” just
with a different label for each element.

We define an automorphism as an isomorphism between a group and itself. Informally, it is a permuta-
tion of the group elements such that the group’s structure (its multiplication table) remains unchanged.

(a) If f is a homomorphism from a group A to a group B, and eA is the identity of A, is f(eA) the
identity of B?
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(b) If f is a homomorphism from a group A to a group B, and x ∈ A, if f(x−1) = f(x)−1?

(c) Is (Z,+) homomorphic to (Q,+)?

(d) Is (Z,+) isomorphic to (Q,+)?

(e) Is (R,+) isomorphic to (Q,+)?

(f) Let A be a group. Let B be the set of automorphisms on A. Does B under functional composition
form a group?
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